




Learn C# Quickly

A Complete Beginner’s Guide to
Learning C#, Even If You’re New to

Programming

CodeQuickly.org



ISBN: 978-1-951791-37-7

Copyright © 2020 by Code Quickly

ALL RIGHTS RESERVED

No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical,
photocopying, recording, scanning, or

otherwise, without the prior written permission
of the publisher.



Free Bonus + Source Code
 

Programming can be hard if you don't avoid these 7
biggest mistakes! Click below to get this free PDF

guide, and gain access to the source code for all of our
books. 

 

codequickly.org/bonus

http://www.codequickly.org/bonus
http://www.codequickly.org/bonus


Contents

Chapter 1: Introductory Topics
1.1 - Data Types
1.2 - Integer
1.3 Decimal
1.4 - String
1.5 - Boolean
1.6 - Var

Chapter 2: Branches and Loops
2.1 - For Loop
2.2 - While Loop
2.3 - Recursion
2.4 - If…Else

Chapter 3: Methods and Properties
3.1 - Access modifiers
3.2 - Return values

Chapter 4: Classes and Objects
4.1 - Class
4.2 - Object
4.3 - Interface

Chapter 5: Collections
5.1 - List
5.2 - Dictionary
5.3 - ForEach

Chapter 6: Object-Oriented Programming
6.1. - Encapsulation
6.2 - Inheritance
6.3 - Abstraction
6.4 - Polymorphism

Chapter 7: SOLID Principles
7.1 - Single Responsibility Principle
7.2 - Open-Closed Principle
7.3 - Liskov



7.4 - Interface Segregation Principle
7.5 - Dependency Inversion Principle

Chapter 8: Advanced Topics
8.1. - Asynchronous Programming
8.2 - Parallel Programming
8.3 - LINQ
8.4 - Generics
8.5 - Dependency Injection
8.6 - Object Relational Mappers
8.7 - Mappers
8.8 - Unit Testing

Chapter 9: The Final Project
Chapter 10: Conclusion



Chapter 1: Introductory Topics
C# is an object-oriented programming language that has enormous
community support since it was built by Microsoft. C# is used for various
software development such as Web Applications, Desktop Applications,
Mobile Applications, etc.

1.1 - Data Types
Every variable in the program must belong to some data type, so if we need
to do some calculations, we will have to use numbers, and if we need to do
text manipulation, then we use characters, etc. Every data type has its own
usage circle and size of bytes inside of the memory when declared. Hence, it
is important to use the best data type for the related problem in order to avoid
errors and to make your code more readable and maintainable.

1.2 - Integer
An integer is one of the most used data types in C# language. The integer
represents any number that does not have fractional parts, also known as the
whole number (e.g., 1, 5, 27, 13, -145…). Integer has multiple types inside of
it, but the one we are mostly using is the Int32 data type. In the C# program,
the Int32 data type is commonly written as int. It is 32 bits in-memory sized.
The int variable can be declared, or it can be declared and value-assigned in
the same line. The default value for an integer data type is zero (0).
The most common integer types that you will probably see throughout the
code are:
1) byte – unsigned integer which is 8 bits represented in memory
2) long – it is 64 bits in-memory integer type (Int64)
3) short – integer type which is 16 bits organized in memory (Int16)

1.3 Decimal
Decimal data types in C# represent non-rounded numbers – fractional
numbers. There are also few Decimal data types that differ by its size in
memory, representation, usage, etc. In order to initialize the decimal data
type, a decimal  keyword is used. This type is represented with 128 bit in
memory allocation. For decimal data types, the suffix -m, or –M must be



added at the end of the number so that the compiler knows that it should be
treated as a decimal type. If that suffix is not inserted, the compiler will treat
that number as the double  type. Double type is the default floating-point
type in C#. That means if none of the suffixes is added at the end of the
number, that number will be treated as the double data type. It is represented
with 64 bits in memory allocation. There is also a float  data type, whose size
in memory is 32 bits. Suffix for float data type representation is -f, or -F (if
not added, then the number will be treated as the double data type because
double is the default data type as mentioned earlier).

1.4 - String
String data type in C# is a type that represents text and works with text
variables. In fact, it is an array of characters. Declaring a string data type is
done by string  keyword. When a string keyword is being used, it means that
it is referring to the 'System.String' class (classes will be explained later in the
book). There are many extension methods which could be used over some
string variable. Some of the most popular are Concat  - which is
concatenating two strings, Contains  - which determines whether the string
contains the given string from the parameter as passed value, Equals  - which
determines whether two strings have the same value, etc. The default string
data type is an empty string. An example can be seen below.

1.5 - Boolean
The boolean data type is regarded as the logical data type in C#. It has only
two possible values, and they are true  or false.  The boolean type in code is
referred by the bool  keyword. Boolean data types are used very often in
programming because it is always required to determine some logical
conditions. It is commonly used for comparing things such as number
comparison, object comparison, etc. Boolean is the returned value in every if 
condition in the code (If-Else statement will be explained later in the
upcoming chapter). The default Boolean data type value is false.

1.6 - Var
Var data type is introduced in C# to implicitly declare variables. So, it can be
said that var is not a data type; it just represents a way of declaring variables.
What that means is that when some variables with the var  keyword are
declared, we are telling the program that it needs to determine the explicit



data type of variable during the time of compilation. There are also
restrictions about the var keyword and its usage such that all explicit data
types such as int , string , and bool  can be class fields.
On the other hand, implicit declaring (var keyword) cannot be class fields.
This “imaginary” data type can only be used if it is declared and initialized at
the same time (value-assigned) because the compiler will adjust its real data
type by the value from the right side of the equation mark. Variable declared
with the var keyword cannot be initialized with the null  value.

Declaration and value initialization of the someVariable and
secondVariable is fine because the compiler knows how to determine the
data type for these two variables due to the right side of the assignment
(“New text” is the string data type and 53 is the integer data type). The
thirdVariable declaring is not allowed because it does not have any
initialization of the value. The fourthVariable initialization is also not
allowed because the compiler does not recognize the type by its right side
value assignment. It is null, and null stands for referencing the variable
pointer to nothing.
Let us jump to the examples.



Here’s an example that will demonstrate the data types and help you in
understanding it better.
So, here we have a class Program with six methods inside of it. The first
method is the Main method. This method is called first after we run the
program. The only thing that is done in the Main method is to call other
methods that demonstrate some basics of working with data types in C#. The
first method that is called is the Integers() method. Integers() method does not
have any parameters passed to it. Inside of this method, three integer
variables x , y , and z , are declared. The assignment of the z variable is the



calculation based on the previous two variables which have already been
declared.
int z = x * x + y * y;

This assignment is doing the next calculation – 4 * 4 + 3 * 3, which equals
25. So variable z is equal to 25. After this calculation, the program prints the
value of the z variable to the console line, and that is 25.
After the execution of the Integers() method, the program is heading to the
execution of the Double() method. Here, declaring three decimal variables is
done, and these variables are credit , debit , and balance . Variable balance
is calculated by the subtraction of the debit and credit variables. After the
calculation, the balance value is minus 44.57, which would be printed in the
console line.
Now, the next method to be executed is the String() method. Here, firstName
and lastName variables are declared, and the program is doing the string
manipulation with them to assign value to the fullName variable. By using
the interpolation sign ‘$‘, the program is forming the new string, which
consists of firstName string value, lastName string value, and the space
between them. So the fullName variable value assigned is “Tom Holland ,”
and the program is printing that into the console line.
Boolean() method is next. Inside this method, two Boolean variables are
declared, and what they will determine is “is the grass green and is the ocean
red.” Again, using the interpolation, the program inserts those values into the
console line printing of these statements. So, the first string which would be
printed is “Is the grass green? true” and the second string that would be
printed is “Is the ocean red? false”.
In the end, Var() method is executed. In this method, the program is declaring
a string data type variable, which is determined in the compilation time.
During the compilation time, the compiler looks at the right side of the
assignment and finds “Hello World.” This way, the compiler knows that the
sentence variable is of a string data type. After it, the program prints its value
to the console line.
At the end of this section, we will be exposing the console output of this
program below.





Chapter 2: Branches and Loops
Programming is not always straight-forward. So sometimes, it is all about
decisions and conditions. At some point, based on the condition or
conditions, the flow of the program could be done in two separate ways.
What this means is that if certain conditions are fulfilled, it is required to
execute the A block of the code, else the B block of the code will be
executed. This is called branching. Some code blocks will be executed based
on the condition, while others won't be executed at all at that particular point.
Also, sometimes we need to execute some block of the code multiple times
and reuse its logic, and we can achieve this with looping in C#. The term
looping means that certain code block is executed several times until some
conditions are fulfilled. It is all about iterating. Branching and looping in C#
depend on boolean conditions. As mentioned before, based on some boolean
conditions, a certain code block will be executed once or the various number
of times.

2.1 - For Loop

In C# programming language, there are several ways it could be
looped over some block of the code. The first looping type which is
going to be processed in this book is the  for  loop. For loop is used
when you know exactly how many times you would want to iterate
through some block of the code. It is declared with the  for 
keyword. For loop executes code block until the specified condition
in the for statement returns a  false  boolean value. The syntax for
this iteration is:

The  variable initialization  is executed only once by the program.
It is executed before going into the  body  block of the code inside



the for statement. Here we are declaring and initializing the variables
that will be used inside the body code block. The  condition  part
from the syntax represents the boolean expression on the basis of

which it will be decided if it is necessary to re-enter the body code
block. The  iterating steps describe the incrementing or

decrementing of some counter. This statement is executed every
time after the body block has been executed. We can use the break
statement if we want to jump out of the iterations in the for loop for

some particular reason. For example:

Here we have some code block that iterates five times through the body code
block. In the body code block, the counter variable is multiplied each time by
two. Before this calculation, there is a condition that checks if the counter
value exceeds one hundred. It is supposed to iterate five times through this
block, but if you look closer, you’ll notice that it didn’t act like that. In the
beginning, the counter values twenty. After the first iteration, it became forty,
followed by the second where it changed to eighty, then in the third, it
became one hundred and sixty, and in the fourth iteration, the condition was
fulfilled. So, since the counter is greater than one hundred, the code exits the
loop. Then, it continues the execution of the code below the loop statement.
In for loop, there is also one statement which is similar to the break , and its
keyword is known as continue . The continue statement means that it is
breaking the execution of the current iteration and jumps to the next iteration
if the condition is fulfilled. For example:



This part of the program is supposed to iterate five times, and it
ought to print the counter number to the console line each time,
except in one iteration. This is because of the if condition, where the
program is checking whether variable i counter is equal to three. In
the fourth iteration, variable i will be equal to three, and the
program will execute the continue statement, which breaks the
fourth iteration from printing number three to the console.
However, it does not break the whole loop; it just breaks that
iteration and continues the next iteration. In this case, the next
iteration is also the last one. So, the program output will look like
this:

2.2 - While Loop



The next looping statement in C# code that will be analyzed is the while 
loop. This statement also represents the repeated execution of the same code
block. The syntax for using the while loop statement in C# is below.

Code block from the body  will be executed while the expression  variable
returns a true value. Unlike the for loop, here, the initialization part must be
done before the loop itself. Handling of the increment or decrement counters
should be done inside the body code block in order to create some logical
way of using the while statement. Due to the condition of the while statement,
we may never enter the body code block that is inside the while loop. If the
condition is false at the beginning, the program will never jump into the loop,
so the minimum number of iterations could be zero. This cannot happen in
for statement because in the for loop, the minimum number of iterations is
one. Here, the break statement could also be made if the program needs to
exit the loop due to some reason. In the example below, the condition in the
while loop i s always true, so this loop should iterate an infinite number of
times. Though, after the third iteration, the counter variable will have two
hundred and seventy values. Since it is greater than one hundred, this
program will enter the if block, and it will break the loop, continuing the
execution of the code below the while statement.

The continue statement can also be applied to the while loop. The example is
below.



Here, the program is supposed to iterate five times through this while loop. In
the fourth iteration, when the i variable counter is equal to three, the code
enters the if block, increments the i variable counter, and executes the
continue statement. This prevents the program from doing the console
printing of the value three, but rather, it executes the next and the last
iteration. So, the output of this program looks completely the same as in the
example with the for loop with continue statement above.
There is also a do-while loop, which is the same as the generic while loop
with a small difference. In a do-while loop, the body code block will be
executed at least once. The syntax for the do-while loop is below:

It is important to note that the condition is at the end of the statement, unlike
the while statement, where it is in the beginning. This makes the code
execution of the body block to be run at least once. The break and continue
statements can also be applied to the do-while loop as needed. Here is an
example of the do-while loop:



At the beginning of this short program, variable i is initialized with value
zero. Then the program runs a do-while loop. The command is that it should
execute the body code block since variable i value is greater than five. Now,
you are probably wondering how this would print anything at all if the
variable i equals zero from the beginning, and the condition is - while i is
greater than five, which is obviously not the case. It is simple; do-while will
execute at least once, so whatever the i variable value is, the first iteration
will be executed. Then, after the first iteration, the program will not satisfy
the condition, and the looping will stop. The output of this program will be:

2.3 - Recursion
The term “recursion” is typical in programming, as well as in the C#
programming language. When the problem starts to be too complex,
algorithms need to be split into smaller pieces in order to find the solution.
Recursion is the programming technique where the program method or
procedure calls itself repeatedly to solve that problem. So, to make this
easier, recursion is the process of executing a function, which means calling
itself inside the body code block function. Some problems which require
looping through a particular code block can be simplified and solved with
recursion. The best case should be the calculation of the known mathematical
problem named factorial. Factorial of a number represents the multiplication
of every number from one to that particular number. The value of the zero
factorial and one factorial is one.



0! = 1;
1! = 1;
2! = 1*2 =2;
3! = 1*2*3 = 6;
4! = 1*2*3*4 = 24;
5! = 1*2*3*4*5 = 120;
Let us jump into the programming interpretation of the factorial mathematical
calculation:

In this example, the program contains one Main  method, which is the
writing of two lines in the console. The first line output value is the returned
value of fact (5) method. While the second line output is the returned value
of the factLoop (5) method. Both methods have parameters passed inside,



and that parameter represents the number that the factorial value program
wants to calculate – the n  variable. Both methods have the checker if the
passed number is zero or one because that is the edge case scenario of the
factorial calculation (0! = 1! = 1). The second method (factLoop) is the
method that is calculating the factorial of the number through the while loop.
The initial variables are declared at the beginning of the method. These
variables are known as the factorielValue  which would be the return value
of the function (inside this variable, the program will have calculated the
factorial of the particular number). Furthermore, the counter variable i
represents the conditional controller of how many times the program should
iterate through the while loop to get the factorial value of a number. In each
iteration, we are multiplying the current factorielValue variable value with
the counter variable i and increment the counter by one. After the last
iteration, the program will have the factorial value of the passed number, and
that number will be returned as a result of the method of execution.
This algorithm could be simplified with the recursion concept. The first
method, fact (5), is using the recursion method. The result of this method is
the same as the result of a non-recursive method, which was explained above
– the solution with the loop. In this method, after the zero or one factorial
check, the program returns the passed value that was multiplied by the call of
the method in whose context is currently. So, with the fact(5) call, the
program calculates 5 * fact(5-1), then it calls the same method, but with a
different parameter passed, this time with the parameter four. The execution
of that method calculates the 4 * fact(4-1), and this continues until the fact(1)
is called. The results of these recursive calls are returned, and then used to
calculate the factorial of the previous call. The program flow is explained
below:



You can see from the program output that both the loop and recursive
calculations are having the same result, which is 120.



2.4 - If…Else

As mentioned earlier, and as you can see from some of the
examples above, the if-else statement in C# is used a lot. The
conditional programming is required pretty much all the time. The if
statement in the program can be standalone , or it can as well be
followed by an else statement. The code branching happens in the if-
else statements. Several choices of the program flow are
representing the branching term. The if-else statements are working
based on logical conditions, which is, if some conditions are
fulfilled, execute this code block, else execute that code block, etc.
It is also possible to have nested if-else statements inside each
other. In the C# programming language, logical conditions from
mathematics are supported. Those conditions are:

Less than: x < y
Less than or equal to: x <= y
Greater than: x > y
Greater than or equal to: x >= y
Equal to: x == y



Not Equal to: x != y

There are four specific conditional programming use cases.
The first is standalone   if  statement - if the condition is true, then
execute the code block.
The second is the  if-else  statement, if the condition is true, then
execute the code block that is inside the if part, otherwise execute
the code block which is inside the else part.
The third type is the  if-else if  statement. This type of statement
should be used to specify a new condition to test if the first
condition is false.
Finally, the last type is the  switch  statement, which is used if there
are any different blocks of the code that should be executed in
some condition.



In the first example in the year 1988, the condition will not be
fulfilled, and the program is not going to enter the if code block –
nothing will be printed to the console.
In that same year, 1998, in the second example, the variable year,
in this case, is less than 2000, so the program is going to enter the if
code block, and it will print “Unknown Century” to the console.
In the third example in the year 2010, the first condition will not be
fulfilled because 2010 is not less than 1900. The program then
enters the else-if condition, and since the year is also not less than
2000, the program then enters the final else branch, which prints
“21st Century ” to the console line.
Let us head to the  switch  statement example.



Here, the program is initializing the month number with value 5.
This value indicates the fifth month of the year, which is the month
of May. How does the switch statement work? It has the switch
condition in the beginning. Based on that condition, the program
will enter some of the cases that are defined below. Every case is
something like the if statement. If the passed value from the switch
condition is matched with some case, the program will enter into



that code block from that particular case. In a situation whereby
there is no matching case for the input, the program will enter the 
default  code block. It is also possible not to define the  default
 case, but it is preferred to do so because that way, the program will
be securing that the error won't happen if there is no corresponding
case for the input.
In this example, the month value is five, so the program will enter
the case 5 code block, and it will print “May” into the console.

Let us sum up this chapter with one program that will demonstrate to you the
basics of working with loops, recursion, and branching.



In this example, we are exposing the class Program , which has five methods
inside. The first method is the Main method. This method is executed first



after the program is run. The flow of this program is sequentially calling four
methods to execute: ForLoop , WhileLoop , IfElseStatements ,
and FibonacciRecursion . The first one to be executed is the ForLoop . In
the body code block of this method, the program contains only one for
 statement. In this statement, the variable initialization  part contains one
variable, which is the integer data type index  variable. The index is
initialized with value zero, and it will be used as a counter in the for loop.
The condition  part of this statement is that it should be iterating as long as
the index variable value is less than ten. That means that there will be ten
iterations through the for body code block. The step  part in the statement is
incrementing index variable value by one after each iteration of the loop.
Inside the code block of this for loop statement, there is a simple line by line
output that prints the counter value from each iteration. That counter value is
the value of the index variable from each iteration in the loop. The output
values should be integer numbers from zero to nine (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
in each line, respectively.
After returning from the ForLoop method, next on the line for the execution
is the WhileLoop  method. In this method, the program is demonstrating a
simple while  loop statement. At the start of this method, there is
the initialization  part, which is the preparation of the execution of the while
loop statement. The integer data type variable index  is declared and
initialized with value zero. This variable represents the boolean conditiona l
part in the while statement, and it is also used for the method output to the
console. After the starting initialization part, the program starts the while loop
statement. In the conditional part of the loop, the program is saying: “While
the counter variable index value is less than ten, iterate through the while
body code block.” In the body of the while statement, there is, again, a simple
output to the console. The program prints the index variable value in each
iteration, and also increments it by one each time because of the index++
statement, which is passed as the parameter of the Console.WriteLine
method. As a product of this method, the program will have the same output
as in the previous method call (ForLoop). It will print numbers from zero to
nine in each line.
The next method for running is the IfElseStatements  method. Inside this
method, it is demonstrated on how the if-else  statement works while inside a
loop. In this case, the program contains one for loop statement, and inside its



body code block, there is an if-else statement. The for loop has its
initialization part as always, and also the variable index  which will be used
as a counter as well as the logical part inside this block. The starting value of
the index variable is zero. If the index is less than ten, the iterations through
the loop will run after which each iteration index will be incremented by one.
In the body code block of the loop, there is a core logic. In the conditional of
the if-else statement, the program checks whether the index variable value
modulo two is equal to zero. The '%' sign in the C# programming language
represents the modulo mathematical calculation. If the number modulo two is
equal to zero, that means that the number is even; otherwise, the number is
odd. That is exactly what is coded in here. If the index modulo two is equal to
zero, the program will print that this particular number is even. If that
conditional returns false, the program will print that the index variable value
is odd. This will occur in ten iterations. So, for every value from zero to nine,
the information about whether the current value from the iteration is even or
odd number will be printed to the console.
The last method in a row for execution is the FibonacciRecursion  method.
This method describes an example of working with the recursion principle.
The first thing here that should be clear is the Fibonacci array. The Fibonacci
sequence is a very popular and well-known problem in the programming and
mathematical world. It is a sequence of integer numbers in which every
element represents the addition of the previous two elements. It is important
to say that the Fibonacci sequence starts from the number zero. In conclusion,
Fibonacci sequence should look something like this: 0,1,1,2,3,5,8,13,21…
Let us return to the program above. The FibonacciRecursion method has four
parameters passed. The first parameter is the current element of the Fibonacci
sequence, which will be printed right after the program enters the body code
block of the method. The second parameter is the next Fibonacci sequence
element that should be printed. The third parameter is the counter variable
integer, which controls the number of elements of the Fibonacci sequence
that should be printed. The fourth parameter is the total number of elements
that the program wants to print out to the console line. This parameter is
static, and it never changes its value. In every recursion call, it will have the
same value as the value passed from the first recursion call. If there were no
third and fourth parameters, this sequence would print the Fibonacci array of
numbers until infinity. This method is initially called with the following four



parameters: 0 for the current element that should be printed, 1 for the next
element that should be printed, 1 for the step one of the printing, and 10 for
the length of the Fibonacci array. In the beginning, the program prints the
current element of the Fibonacci array, which is passed as the first parameter.
After that, there is a condition in which the program checks whether the step
passed from the third parameter is less than the length of the desired output
array. If that condition is fulfilled, the method calls itself again, but with the
different parameters. In the next call, the first parameter becomes the second
parameter from the previous call because, in the previous call, the second
parameter was the next element for printing. The second parameter, which
represents the next element for printing, is calculated by the addition of the
current and the next element from the previous call. The third parameter is
the step incremented by one, and the fourth parameter stays the same in every
call. This way, the Fibonacci sequence is built with the recursion principle of
the method calling itself. The flow of the recursion calls is the same as in the
Recursion subchapter explained earlier. When the last recursive method is
being executed, its result is returned to its parent method – the one that called
the child method execution. This flow is propagated to the main parent
method call. The output of this sequence shall be 0,1,1,2,3,5,8,13,21 and 34,
line by line.  The complete output of this program looks like this:





Chapter 3: Methods and Properties
In C# programming language, as well as in the other object-oriented
programming languages, there is a term called method. A method is some
block of the code which is executed when being called inside the program. It
can also be defined as a group of statements, which is supposed to perform
some meaningful logic. Methods are also known as functions, and they are
used to perform certain actions. The biggest advantage of using the methods
is code reusability. One particular logic can be defined in one place, and it
can also be called multiple times in different places in the program. A method
is defined with its name, followed by parentheses - () . The vital elements of
the methods are the access specifier, return type of the method, method name,
list of the parameters, and the body of the method. The access modifier 
represents the visibility of a method from another class point of view. There
are two types of methods based on the return types, and they are void
 methods and explicit typed  methods. Void methods do not have a return
value. They are specified to do some work which does not require returning
result. While explicit typed methods are the methods that have the return
value. The return types of a method can be various. For example, the return
type of a method can be int , string , bool , etc. A method name represents
the unique identifier of a method, and it is case sensitive in the C#
programming language. That means that it recognizes the difference between
capital and lowercase letters. For example, EBook() method name is not the
same as the EBOOK() method name. The list of parameters  is used to
receive and pass the data to and from the method. The parameters are
elements that are optional inside a method. The parameters can be of any
type, and there could be multiple parameters passed. There are a few possible
ways of passing the parameters to the method. In a value  passing method, all
changes that are made to this parameter inside a method do not have an effect
on the argument which was passed. This happens because the reference of the
variable is not passed to the function. It is just a copy of that value. In a
reference  passing method, every change which is made to the parameter has
an effect on the argument variable passed. This happens because the
reference to the memory location of an argument is copied into the formal
parameter. The body code block  of the method contains a sequence of
instructions needed for some logic execution. Methods can also



be overloaded . Overloading means that multiple methods can be defined
with the same name but with different parameters. For example, the compiler
won't report an error if the EBook() and EBook(int pageNumber) methods are
defined. 
Properties  in C# programming languages are something like a mix of a
method and variable. It is important to understand the fields  first. Fields are
elements of a class that are used for storing data, and the extension of the
field is called property. Reading the data, writing the data to it, or calculating
the data is done using the accessors. The accessors in a property are getters
and setters. When assigning a value to the property, the set is invoked. When
using the property value, calling it in some code statement, the get is invoked.
This way, the program ensures that the reading and writing of data is safe.
Let us jump into example and introduce this concept better.



In this example, two classes can be seen. The first one is the Program class,
whose purpose is the same as in the previous examples. Inside this class,
there is only one method, and that is the Main method – used for the initial
run and showing the actual results of the problem exposed. The other class is
the Car class. In this class, there are three logical components. The first one is
the private field  _model. It is a string data type field in which car model
information is stored. Access modifier private  means that this field data can
only be accessed within this particular class. Then, the program contains
a constructor  (which will be fully explained in the next chapter – Classes
and Objects). In the constructor, the program is set to define some initial
values or states, and this constructor contains one parameter, which is
the modelName  string data type parameter. In the Car constructor, the



program assigns the initial state of the private field _model. So, when
instantiating the object of the Car class, the first thing that is going to happen
is the execution of the constructor. There, _model field value becomes the
value passed from the parameter of the constructor. Every object of the
instantiated Car class will have this initial value of the private property until
something, or someone decides to change it if the class has the possibility to
do so. The third component of this class is the public string property  Model.
The Model  property is the public controller of the private field _model.
Through this property, the program can access the data stored inside the
private field. It can also affect its value. This property has both getter and
setter. In the get  part of this property, the program is returning the current
value of the private field _model. The get  is invoked when the program is
trying to “use” the Model property. In fact, get is invoked when reading the
Model property inside some statement.
On the other hand, the set  is invoked when trying to assign the value to the
Model property. In the setter of the Model property, there is one statement
that is assigning one calculated value to the _model field. Every time set is
invoked, _model field value is calculated the next way: the static “Renault”
string is concatenated with the value assigned to the Model property. So, if
the value assigned to it is “Talisman,” the _model field would become
“Renault Talisman.”
In the Main method execution, the program is set to instantiate the object of a
Car class with the keyword new . The variable car  is created in memory, and
it is of a Car data type. When instantiated, the parameter passed is a string
with the value “Renault Clio.” On the creation of this object, constructor
execution is triggered, and the “Renault Clio” is set to be the default value of
the _model field. After it, the program will print the current car object Model
to the standard output. During this writing to the console, the get of a Model
property is invoked, and the “Renault Clio” value from the private field is
read and returned.
The next thing that is being executed inside this Main method is the new
value assign to the car Model property. The value that is passed to the setter
of a Model property is a string “Megane.” The setter then recalculates the
new value for the car model (Concatenates a string “Renault” with the passed
string “Megane”) and sets “Renault Megane” as a new value of a _model
field of a car object. In the end, the program rewrites the car Model property



value to the standard output. This time, the value that is printed is the new
value previously calculated, and that is “Renault Megane.” The console
output looks like this:

3.1 - Access modifiers

Access modifiers are the integral part of the object-oriented
programming in C#, as well as in other programming languages.
Access modifiers are the ones who will determine the level of
accessibility of the program components. They define the openness
of certain features and try to restrict undesired data manipulation
by external classes or programs. 

In C# programming language, there are six types of access
modifiers: 1) public, 2) private, 3) protected, 4) internal, 5) private
protected, and 6) protected internal. The  public  modifier means
that the code is accessible from all classes. The  private  modifier
defines that the particular code is accessible only from its own
class. The  protected  modifier means that the code is accessible
within the same class or in a class that is inherited from that class.



We will talk about inheritance in later chapters. The  internal 
keyword defines that the code is only accessible within its own
assembly, and not from another assembly. The  private protected
 modifiers means that the access is limited to the containing class
or types derived from the containing class within the current
assembly and the  protected internal  modifiers means that the
access is limited to the current assembly and types derived from the
containing class. The last two modifiers are representing the
combinations, and they are very specific access modifiers that are
used in some advanced programming techniques. If some property,
field, or method is declared without an access modifier, it is then
recognized as a private modifier. The private modifier is the default
modifier. For now, let us focus on the public and private modifiers.
An example can be seen below:



As provided in this example, there are two classes – Numbers and Program.
Inside the Numbers class, there are two fields of integer data type defined.
The first field is the number1 variable with a private access modifier. The
second field is the number2 variable with public access modifier. In the Main
method of a Program class, we created an object of a Numbers class. In the
line below that, we can see the offered methods, fields, properties which
could be executed over the num variable object. You will also notice that
there is only a number2 variable which could be accessed in this particular
part of the program. The number1 variable is not accessible from the Program
class because it is private – it is only accessible from its own class.

3.2 - Return values
As mentioned earlier, methods can have a return value, or they can be void,
which means that they do not have the returning result. While executing
statements inside some methods, the program can run into the return
statement. In void methods, if the return statement is called, it cannot have
the result assigned to the statement. Precisely the return statement may be
called in void methods, and then the control is passed to the program section
from which the call to the void method occurred. Also, the return statement
can be omitted in the void methods.
On the contrary, typed methods must have a return statement and the value
which is being returned. The value returned must be of the same type as the
method itself. If not, the compiler would report an error.
To sum up this chapter, an explained program is demonstrated below:



In this example, there are two classes exposed – the Program class
and the Vault class. The first class to be explained is the Vault



class, along with its members and components. The first things that
you will notice are two private fields and one property. The private
fields are of the string data type, and those are  _accessKey  and 
_secretMessage . The property in this class is the boolean 
Unlocked . The Unlocked has a standard getter and a private setter.
A private setter means that the value of this property can only be
assigned inside its own class; in this case, it is assigned in the Vault
class. So, if someone tries to assign value to the Unlocked property
of some Vault object inside any other class, the compiler would
report an error. This property has its default value set to false.

The next important member of a Vault class is its constructor. In
the Vault constructor, there are two string parameters passed to the
body code block -  accessKey  and  secretMessage . These two
values are assigned one after the other to the private fields of this
class.

The next component of a Vault class is the  OpenVault  method,
which contains one parameter - a string  accessKey . The body of
this method consists of the next: there is a condition check whether
the private field _accessKey is equal to the value of the parameter
passed into the function. If the condition returns true, the program
sets the boolean value as true to the Unlocked property of this
class. This represents a private set - only from this scope, a value
can be assigned to the Unlocked property. After the "Unlocking,"
the method returns a _secretMessage field value as a result.
Otherwise, it returns "Invalid access key" to the caller.
The last member of a Vault class is the  GetMessage  method. The
GetMessage method provides _secretMessage as the result if the



property value Unlocked is true; otherwise, it returns "Invalid
access key," just like the OpenVault method above. 

In the Program class, there is a standard Main method where we
demonstrate the usage of a Vault class. In the beginning, we
instantiate an object of a Vault class named  vault . At that
particular moment, the constructor of a Vault class is invoked.
Passed values from parameters are "qwerty", which represents the
access key, and "Area 51 is real!" which represents the secret
message. These values are assigned to the private fields
_accessKey and _secretMessage, respectively. Then, there is a
while statement that executes until the Unlocked property of a vault
object is equal to true. The logic that is repeating here is next: On
the standard output, the program will print a message "Please enter
the access key" - requesting the user to enter the access key phrase
to unlock the vault. The users’ input will be stored in the 
accessKeyAttempt  variable. After it, the program calls the
OpenVault method of a  vault  object with the accessKeyAttempt
variable value passed to the function. If the entered access key is
not correct, the program will print "Invalid access key" to the
standard output. This will be repeated until the user enters the
correct access key to the console line. After the correct access key
has been inserted from the user's side, the  while  statement will
abort the looping. Since the Unlocked property is set to true, the
secret message will appear on the output as a result of the
GetMessage method. The user will be able to see the secret
message that was set at the beginning of the program when creating
the vault object. That message is "Area 51 is real!". The output



example is shown below:

You can see that there were two incorrect attempts to unlock the vault. The
first attempt was with the “key” access key, and the second was with the
“asdfg” access key. The third attempt was correct, and the secret message
appeared in the console.



Chapter 4: Classes and Objects
In C# programming language, every component is associated with classes
and objects, and these represent the basic concepts of object-oriented
programming. A class is something like a prototype from which the user
creates objects. A class represents a single, unique unit with all of its
members, attributes, and functionality.
The objects are real-life, in-memory entities. When instantiated, they allocate
some memory space and have reference to it. Every object created must be of
a class type.

4.1 - Class
As mentioned, classes represent the unique programming components inside
any object-oriented software. The class is defined with its access
modifier, class  keyword, and a unique name. Inside some class, there could
be multiple members such as fields, properties, and methods. The default
access modifier of a class is internal . This means that if the access modifier
is not specified, then that particular class would be treated as internal . An
example of a class is written below:

This class contains its access modifier – public, which contains the
keyword class ; it has a unique name TShirt . Inside this class, there are
multiple members defined. There is one private field color , one public
property Color , one constructor defined (with one parameter), and one



public method About .
Apart from the usual classes, there is one special type of class - the abstract
class . An abstract class is a special type of class in which an object cannot be
instantiated. Abstract classes are mostly used to define a base class in the
hierarchy, and it is also known as an incomplete class. The abstract classes
typically represent a base class. It is designed to have derived classes
implementing the abstract definitions. In the abstract classes, there could as
well be abstract methods  or non-abstract methods. The abstract methods, as
well as every class member that is marked as abstract, must be implemented
in the derived class. The classes that are marked with the abstract keyword
have the purpose of providing the prototype for the derived classes. An
abstract class can have a constructor implemented. An example is provided
below:

 

In the provided example, we can see one abstract class with the name



Animal. In this class, there is only one member, and that is an abstract void
method LegsNumber(). When the method is marked as abstract, it means that
every class derived from that class, as in this case, an Animal class, must
have an override implementation of that method. Below the abstract class,
there are two more classes, which are the 'normal' classes. Both classes have
the override implementation of a LegsNumber() method from the Animal
class. That is because both the Elephant and Pigeon classes inherit from the
Animal class. Inheritance will be explained in detail in a later chapter, but for
now, the ':' symbol next to the Elephant and Pigeon class means that they
inherit from the Animal class. In this case, this means that they must have
their own implementation of the abstract method from the base class. In the
Main method of a Program class, there is a declaration of an Animal type
variable named animal . Note that there is no instantiation of the Animal
class because that is not possible, and the reason is that the Animal class is an
abstract class - so it cannot be instantiated. In the next line, the program is
instantiating an object of Elephant class into the Animal type variable. This is
allowed because Animal is the base class of the Elephant class. After it, there
is a call to the LegsNumber method from the animal variable. Furthermore,
since the animal is instantiated to be an Elephant type, this call executes the
LegsNumber method from the Elephant class. The next thing is the
instantiation of the Pigeon object and assigning it to the same animal
variable. It ends up with calling the LegsNumber method again from the
animal object. This time implementation of the LegsNumber from the Pigeon
class is used. The console output will look like this:



4.2 - Object
Objects in C# represent the real entities in the system, with all of their class
type characteristics and features. They are located somewhere in memory and
have reference pointer to it. Whenever the keyword new  is used, an object in
memory is created. Objects must be of a class type. Every class which is
created in C# programming language is derived from the System.Object
 class (inheritance will be explained in later chapters). This means that there
is a built-in class Object in C #, and every object of any type is derived from
that class. Every object created, besides its own functionalities, also has the
methods that are available from their parent class Object. These methods are:
Equals, ToString, Finalize, and GetHashCode. This could be checked in the
example:



This example is using the class TShirt , which was shown in the previous
example in Class subchapter. In the Main method, an object of the TShirt
class type is instantiated. This object is referenced by the tshirt  variable. In
the second line, you can see the available methods and properties that could
be executed over the tshirt object. Besides Color  property and the About 
method that are part of the TShirt class, there are also four methods from the
parent class Object (Equals, GetHashCode, GetType, ToString).

4.3 - Interface
Another important component in object-oriented programming is
an interface . An interface represents multiple declarations of some
functionalities. A class can implement one or more interfaces, but it can only
inherit from one class or abstract class. This reveals another C# programming
language characteristic - it does not support multiple inheritance. Classes that
implement some interface must provide a full definition of all interface
members. In the interface usage, there is no manipulation with access
modifiers as all the interface members are considered to be public. This is
because interface existence is all about its functionality to be implemented by
other classes. If some class must implement interface members, it means that
the interface members must be public in order to be implemented by other
classes. The interface is an object-oriented component that has declarations,
but it cannot have definitions - implementations. If you try to insert some



implementations in the interface, the compile-time error will appear. The
interface can contain properties and methods - everything that can have the
implementation. It cannot have fields and a constructor - because it is not a
class, and it cannot be instantiated. On implementation of the interface, the
class must implement all of the interface members. As mentioned, multiple
inheritance is not supported in C#, but it can be achieved with interface usage
since a class can implement multiple interfaces. Example:

Here we have one interface defined. It has three boolean properties inside. A
class that will implement this interface must have the definition of all these
interface members.

The program contains one class, which is a Person class. This class
implements the IPerson interface that has been declared. This class has two
private string fields, which are _firstName and _lastName. It also has a
constructor where those field values are assigned. Besides that, this class has
the definition of three members of the IPerson interface – the IsRunning,



IsStanding, and IsSitting properties. The compiler is fine with this, as there
are no errors. But, if we remove any of these three properties from a Person
class, the compiler would report an error. For example:

Here, we have commented on the IsRunning property that is inside the Person
class. The compiler is reporting an error that the Person class does not
implement that property, and the program could not build. After this, we will
uncomment the property and return to the valid state of a program. Let us
create a Program class with the Main method inside. There, we will create an
instance of a Person class and run the program to check if everything is
working well.



Now, run the program:

Everything went smoothly.



Chapter 5: Collections
In C# programming language, there are specialized classes that
control data storage and data manipulation. These classes are
known as  collection  classes. The collection classes provide
support for the most common data structures, such as queues,
stacks, lists, and hash tables. Collection classes have various
purposes, but the most important ones are the manipulation with
the particular data structure. Also, one great purpose is the dynamic
memory allocation, which means that when instantiating a
collection object, only the reference to that object is being created.
Memory allocation occurs when you add elements to the collection.
So, memory allocation happens on-fly. In comparison with that,
when instantiating an array object of ten integer elements,
immediate memory allocation of 10*sizeof(int) bytes in memory
occurs. Some of the collections support this kind of allocation,
while some support the super-fast retrieval of an element on the
index basis etc.

Collection classes are split and stored into a few different
namespaces. In the System.Collections.Generic namespace, there
are Generic implementations of some core data structures and some
of the main collection classes are defined here.  Dictionary<TKey,
TValue>  is the collection class that stores data based on key-value
pairs. It has good data retrieval functionality based on index access.
The key represents the index in this class.  List<T>  is the dynamic
array, while  Queue<T>  is the collection class that represents the
first-in-first-out functionality. Queue data structure means that the



first element inserted into the queue will be the first element
leaving the queue. If we push three elements into the queue, for
example, 1, 4, and 7, and then perform two pop actions, the first
pop will take 1 from the queue and return it. Then, the second pop
will take 4 from the queue and also return it. After those actions,
the queue will be left with only one value, and that is 7. 

Stack<T>  collection class represents the stack data structure
implementation. It is the last-in-first-out system. For example, if
we push four elements to the stack, 1, 4, 7, and 9, and then perform
two pop actions, the first pop will take and remove value 9 from
the stack while the second pop will take and remove value 7 from
the stack. In the end, the stack will have 1 and 4 values,
respectively. These are just some of the collection classes in C#. It
would be good to read more about the data structures to enable you
to be more familiar with them. Few examples of the main data
structure manipulation can be seen below:



In this example, we have some main actions executed over the core
data structures. In this Main method, we have implemented the
basic manipulations with the Dictionary, List, Queue, and Stack
classes in C#. The first thing that is instantiated is the dictionary
object variable, and it is defined as the int  key  and string  value 
pair. In the object creation, there are three inserted elements of this
dictionary. The first one with the key 1 and value "blue," the
second one with the key 2 and value "black," and the third one with
the key 3 and value "yellow." These elements are stored in the 



colors  object variable. When the program calls the output of the
colors[1] and colors[3], the colors[1] will enter the dictionary and
find the value of the key 1. The same will also be executed with the
colors[3]; it will find the value of the key 3. This will print blue and
yellow in each line, respectively. This represents the index-based
access to some data.

Next, we have the creation of a list object. This list will contain
elements of the int type. We are using the  Add  method to add
three integer elements to the list. After that, we generate the output
to the console of the third list element. We then access the third
element with the index value 2. In C#, indexing starts from zero, so
the first element in any collection is index 0, the second element is
index 1, etc. Here the output will be number 9. The following is the
Queue manipulation. The queue object variable is instantiated, and
it is of the Queue data type with integer values.

After this, we then use the  Enqueue  method to insert the elements
into the queue. Enqueue method pushes the values 4, 3, and 6
inside the queue.

Then, we use the  Dequeue  method over the queue variable two
times and print each dequeued value. Dequeue method takes the
element from the top of the queue and removes it from the queue.
So, in the console, there will be numbers 4 and 3 printed
respectively, leaving the number 6 lonely in the queue.

The last one is the  Stack . This creates the stack object of Stack
data type with the integer elements allowed. After this, we push
three elements into the stack, 22, 34, and 11.



The  Push  method inserts the element on the top of the stack. After
the push, we then execute two  Pop  methods and print each value
returned from the Pop method. The Pop method grabs the last
inserted value and removes it from the stack. So, the output here
will be 11 and 34, respectively, leaving the number 22 alone on the
stack. The complete console output looks like this:

5.1 - List
The List<T>  is the collection class that is most frequently used in all
collection classes. It is a type whose main characteristic is the element
accessibility by index. As mentioned before, List class comes under the
System.Collections.Generic namespace. The List is a class that provides a lot
of methods for the list and element manipulation. Some of them are
searching, sorting, etc. It is used for creating a collection of many different
types. It could be a collection of integers, strings, and many more. For the
reference types, the List allows null value as an element. It is also possible to
insert duplicate values inside any List collection. This class can use both the
ordering and equality comparer. Arrays are similar to the lists, but the lists
are able to resize dynamically, but arrays can not.

5.2 - Dictionary



The Dictionary<TKey, TValue>  collection class is, as its name says, a
collection of key-value pairs. It belongs to the System.Collections.Generic
namespace in the C# programming language. What does Dictionary provide?
Well, the Dictionary class provides something like mapping of related data; it
binds the key with its value pair and makes it very easy to access certain data
if the key is known. This class is implemented based on the Hash Table data
structure. The Hash table is the data structure that has very good
performances on insertion and retrieving data, no matter the size of the data
itself. It is especially efficient in searching for the data. In a Dictionary
object, every key must be unique. The key can not be null, but the value
could be. This is possible only if the value type is part of the reference types. 

5.3 - ForEach
The ForEach method is an extension method over the List<T> class. It is
used for iterating through the collection and executing some operations with
the elements. In the most common case, it contains a code to either read and
pass element value to another job or function, or to update an element under
certain conditions, etc.

To sum up this chapter, a simple program is written below:



Here, we have a class Program that contains one method for List()
manipulation and one method for Dictionary manipulation. In the 
List()  method, we are creating a List object of strings that contains
four elements. These elements are "I," "am," "learning," and "C#!".



After the variable  sentence  object is instantiated and value-
defined, we then execute the  ForEach  method over that object.
This means that we are iterating through the created List and are
able to reference the corresponding value in the list by the word
 variable. Here we simply print the value to the console.
The more complex method is the  Dictionary()  method. In this
method, we created three new List objects of the string data type.
The first list represents the list of words that start with the letter A
-  aWords  object. The second list represents the list of words
starting with the letter B -  bWords  object, and the third represents
the list of words starting with the letter C -  cWords  object. 
Each of these objects is populated with three elements, and three
words, sequentially. Then, we have a  Dictionary  object
instantiation. This dictionary object is a key-value paired object
with  string  data type as a key and  List<string>  data type as a
value. This means that a list of strings will be on the value part of
the dictionary. This  dictionary  variable object is populated with
three key-value pairs. The first one is  "a" - aWords , and the
second is  "b" - bWords , and the third is  "c" - cWords .

The last statement in this method is calling the ForEach method
over the value of the dictionary variable mapped with the key "b".
This means that the program will print to the console a string
"Words that start with the letter b:" concatenated with each element
of the bWords list. All of this is demonstrated by calling these two
methods in the Main method of the program. The output is:





Chapter 6: Object-Oriented
Programming

Object-Oriented Programming (OOP) is the most popular programming
paradigm in the world. This paradigm is the successor of procedural
programming. Procedural programming represents writing functions and
procedures that manipulate some data. On the other hand, object-oriented
programming is all about creating objects that have their methods and data all
in one. There are many advantages that object-oriented programming has
over the procedural paradigm. The object-oriented programming keeps the
code much easier to handle and maintain, and it is easier to debug and
modify. OOP helps to reduce the amount of time of development, and it also
helps you in building reusable code and components. In addition, it is much
faster and easier to execute. It is easier to stick to the DRY principle, which
tells that the repetition of code must be on the minimum. The DRY principle
stands for the Don't Repeat Yourself. The code parts common to some
applications should be extracted and placed in one component from which it
becomes reusable and not repetitive. OOP, as its name says, is based on
object using and managing. Those objects contain data in different forms. In
the C# programming language, those forms are fields, properties. It also
contains the data manipulation part, which is known as procedures - in C#
well-known methods. The objects represent instances of some class, which
determine their type. This means that the C# programming language is class-
based. OOP paradigm allows you to break a problem into smaller pieces - it
decomposes it into smaller units, which makes everything easier to handle.
Those units are the objects mentioned above. There are four characteristics of
the main aspects of object-oriented programming: abstraction
, encapsulation , inheritance , and polymorphism . These four features are
the laws of the object-oriented programming paradigm. 

6.1. - Encapsulation
Encapsulation represents the packing of data into some logical components. It
is a mechanism of wrapping the data and binding it into a single unit.
Encapsulation is a way of securing the data stored in the classes, preventing
access for the components that should not use that particular data. There is a



relation between abstraction and encapsulation. The purpose of the
abstraction is to make certain information visible, and the purpose of the
encapsulation is to select the program features that will have a certain level of
abstraction. The encapsulation usage prevents and protect the data from
corrupted usage, errors, and mistakes. In object-oriented programming, the
data and its manipulation is almost everything - it is a critical element of a
program. If we want to protect certain data, we have to use private access
modifier rather than the public modifier. If the private access modifier is
used, the private data is then manipulated indirectly through the properties.
This means that the data in a class is hidden from other classes - the well-
known data-hiding. As mentioned earlier, this can be achieved by using the
private fields and public properties that control the private fields and their
values. There are many advantages of using encapsulation, and the reusability
of the code is one of them; it makes it easy to change when new requirements
come by. It is also very good for testing the code, like in the case of unit
testing. A simple example of encapsulation is seen below:



In this simple example, we are showing the usage of the encapsulation feature
of object-oriented programming. In the Person class, there are two private
fields - these are fields that we do not want to expose to everyone throughout
the program. These field's values are encapsulated, and available only in their
own class. However, we managed to manipulate them indirectly by creating
the properties whose task is to control these private field's values. The
properties created are the Name and the Age property. Both properties have



the get and set accessors. In the get accessors, both properties return the
corresponding private field value. Similarly, in the set accessor, both
properties assign the passed value to the private field. This way, we managed
to implement encapsulation. In the Main method of a Program class, we will
test if everything works fine. First, we instantiate the object of a Person class.
After it, we set the values for the name and age of that particular object, again
using the encapsulation, because the set accessors are called during this
operation. Finally, we print the data to the standard output, both Name and
Age of the person, using the get accessor in both cases. The output of the
program will look like this:

In order to understand this better, an additional example with a bit more
complexity is shown below:



At the beginning of this example, we exposed the two classes at the
lowest level. The first class is the  Engine  class. In this class, the
first thing that you will notice is the private field of the integer data
type -  _numberOfCylinders . It is impossible to assign a value to
this variable outside of the Engine class because it is private.

The next thing is the Engine constructor. The engine constructor
takes one parameter -  numberOfCylinders , and that parameter is
of the integer data type. Inside the body of the constructor, there is



a check to see if the number of cylinders passed is different from
four, six, or eight. If this condition is true, the program will throw
an Exception message that the number of cylinders must be four,
six, or eight. The Exceptions in C# are used for handling the errors
in the program. So, for example, if something is detected to be
incorrect, then the Exception should be  thrown . That Exception
should also be  caught  somewhere in the program and inform the
user about the error.

That was a little about exceptions and handling. Let us jump back
to the example. If the number of cylinders condition is fine and the
code does not enter the if block statement, then the private field
value is assigned to be equal to the passed parameter. Below the
constructor, there is a method EngineType(), which is of the string
data type. In this method, there are if statements that are checking
whether the  _numberOfCylinders  is four, six, or eight. If the
number of cylinders is equal to four then the "Inline 4" string will
be returned as the method result; if the number of cylinders is equal
to six then the "V6" string will be returned; if the number of
cylinders is equal to eight, then the "V8" string will be returned. If
none of these conditions are fulfilled, the program will again throw
an Exception. This Exception will contain a message that the
passed value represents an invalid number of cylinders.

The second class is the  Transmission  class, and it has one public
property of a bool data type that is known as  IsAutomatic . This
property only has a get accessor, which means that the value of this
property can only be read. The writing into this property (value
assignment) is not allowed. What is the purpose of this property if



we can not assign a value to it? Value-assigning to read-only
members can only happen as part of the declaration or in the same
class constructor. In this case, the value for the IsAutomatic
property is being assigned in a class constructor. The Transmission
class has a constructor with a bool parameter passed to it. That
value is assigned to the IsAutomatic property. 

Let's move on to the next level class. The code is seen below:

In this class, named Car, we have two public properties. Each of these two
properties has only the get accessor. This is what makes them read-only
properties. As in the Transmission class, the value of these properties can not
be directly assigned except in the constructor or on the declaration level. In
this case, as in the Transmission class, the value is assigned in the
constructor. The constructor of the Car class takes two parameters, one of the
Engine data type (or class type), and one of the Transmission data type. The
two objects passed are assigned to the read-only properties of a Car class.
Read-only properties of Transmission and Car class are encapsulated, nothing
can change their value. These values are safe, and there are no worries about
something or someone changing the data inside. Let's sum all these logic into
one unit:



Here is the class Program with its well-known Main method. Here, we will
manipulate with the objects of the previously explained classes and make
their characteristics and behavior come to life. The first thing is creating an
instance of the Engine class with six cylinders. After that, we instantiate an
object of a Transmission class. This object's property IsAutomatic is set to
false during the constructor code execution. After we created an instance of
the Engine class and one instance of the Transmission class, we have
everything ready to instantiate a Car object. A Car class requires an Engine
object and the Transmission object in order to be created. Now, we create an
object of a Car class with previously successfully instantiated Engine and
Transmission objects as parameters. The program prints the engine type of a
car object. We are able to access this information the next way: first, we
access the Engine property of a car object. After this information is reached,
we can then access the EngineType() method over the Engine property of a
car class. This method returns the "V6" string because that engine is created
with six cylinders and is assigned to the car object.
Similarly, this is what we do when reaching the information about the
automatic transmission of the car object. First, we access the Transmission
property of a car object, and after this is done, we can then access the
IsAutomatic property of a Transmission object inside a car object. All of the
pieces of information are printed into the console output. The console print
looks like this:



6.2 - Inheritance

Another essential feature of the object-oriented programming is 
inheritance . This characteristic is one smart mechanism that
allows one class to inherit part of other class components. What
this means is that if class A inherits from class B, the object of
class A will be able to access the members of a B class; its fields,
properties, methods, etc.

In the inheritance principle, we recognize Parent class (the
Superclass) and the Child class (the Subclass). The Superclass
represents the base class, and its features are to be inherited in a
subclass. The class that inherits part of another class is called the
Subclass. Beyond the fact that this class can access the base class
members, it can as well implement its own members and features.
The Subclass sees all of its features, including that of the parent
class features. The Superclass sees only its own features,
characteristics, members, etc.



The concept of reusability is completely supported in the
inheritance paradigm. The reusability could be mirrored in the
example that we need to create some class with some features that
already exist in other classes in addition to other new features. In
this case, we can reuse the existing feature and just extend that
particular class implementation by creating a derived class. We
would create a new class with the new features, and reuse the
existing features by making this newly created class a subclass of
an already existing class. To inherit from a class, the symbol ':' is
used. For example:

class B : A
{

// code of the B class
}
In this example, class B is a subclass, and class A is the base class.
If for some reason, you want to restrict some classes from the
inheritance, the  sealed  keyword is used. For example:
sealed class Person
{

// code for the person class
}
class Student : Person
{

// code for the student class
}
This will provide you with a compilation error saying that the
Student class can not be derived from the sealed type Person. 



There is an edge case when the Subclass does not inherit from the
base class, and that is with the private members of a base class. The
Subclass can not inherit from the private members of its parent
class. Nevertheless, encapsulation could be used, because if the
parent class has public properties with getters and setters that are
controlling some private field, then the inheritance could be done
over the properties. One important fact is that a parent class can
have any number of child classes, but a child class can only have
one parent class. This is because multiple inheritance is not
supported in the C# programming language. However, it can be
simulated with the interface usage. In the inheritance paradigm,
there is only one member of a class that could not be inherited, and
that is a constructor. The constructor can not be inherited, but the
child class can always invoke the base class constructor code.
Please check the example for a better perception:



In this example, there is a Person class that represents the base class or the
Superclass. It has two public properties, which are the FirstName and
LastName, and both are the string data type. Now we want to extend this
class functionality by creating two more classes, which will be the child
classes. These two classes are Student and Teacher. As you can see, they are
derived from the Person class. The Student class has one public property,
which is Grade - int data type, and the Teacher class also has one public
property, which is the Salary - int data type. The inheritance is set to be
proven in the Main method of a Program class. First, we created an object of
the Student data type. By creating this object, we should be able to access all
of the Student class members, as well as the Person class members (if they
are public). Then, for the student object, we will assign values to its own



class property Grade, as well as its Superclass properties FirstName and
LastName. Great, the compiler is not reporting any errors. Let's try to do
something similar with the Teacher class. First, we created an object of a
Teacher class; then, we assigned a Salary property value and the FirstName,
LastName values whose properties belong to the Superclass. Now, we run the
program and see what happens:

Everything went well, and the inheritance is proven.

It is important to know that there are different types of
inheritances:  Single inheritance  - there is only one Superclass
with just one Subclass. Example:
class A
{

// code for the A class
}
class B : A
{

// code for the B class
}



Multilevel inheritance  - there is one class that represents the
Subclass for one class and a Superclass for the other class.
Example:
class A
{

// code for the A class
}
class B : A
{

// code for the B class
}
class C : B
{

// code for the C class
}
Hierarchical inheritance  - there is one Superclass that has more
than one child class. Example:
class A
{

// code for the A class
}
class B : A
{

// code for the B class
}
class C : A
{



// code for the C class
}

In the inheritance principle, there is one more vital thing to know. It is the use
of a protected  keyword. As promised earlier in the Access modifiers
subchapter, the protected keyword will be explained here. The protected
keyword is used while working with the inheritance paradigm. It is an access
modifier that commonly shows up right here in the inheritance feature. A
protected member of a particular class specifies the component which is
accessible from within the class in which it is declared. Still, it is also
accessible from within any subclass of that class. An example can be seen
below:

In this example, there is one Superclass, which is the ParentClass and one
Subclass, which is the ChildClass. In the ParentClass, there are two string
data type fields. The first field is private, and its value is set to "Private." The
second field is the protected field, and its value is set to "Protected." Below
the ParentClass, there is a ChildClass that inherits from the ParentClass. In
this class, there is only one method - the Print() method. What this method
does is that it prints out to the console the value of the protected field from



the Superclass. As you can see, this is allowed, and the compiler did not
report any errors.

On the other hand, in the commented code below, there is an attempt to
access the private field of a Superclass and write its value to the console
output. That is not allowed, and the compiler would report an error, and that
is why it is commented. In the Program class, we will demonstrate how all of
this works just smoothly. In the Main method, a ChildClass object is
instantiated. After it, we then call the Print() method over this ChildClass
object. At that particular moment, the ChildClass object state has all the
rights to access the protected member of its parent class. That is why this
program is executed correctly, and we will see something like this on the
standard output:

The program has printed the “Protected” string into the output, which was
expected.

6.3 - Abstraction
Abstraction is an object-oriented programming concept that represents the
code implementation hiding or detail hiding. It is related to the encapsulation
concept. So, encapsulation represents data hiding, and abstraction provides
implementation hiding. One of the advantages of abstraction is reducing the
complexity of viewing things such as implementation. Abstraction is a very



useful principle because it ensures that only important information is
provided to the user. This helps a lot when dealing with security in the
application or program. Abstraction can be achieved by using interface
components or abstract classes. Let us demonstrate the example of
abstraction with the use of an abstract class:

In this example, we have one abstract class and three derived classes from
that abstract class. The abstract class is the Ball class. Inside this class, there
is only one member and this member is the declaration of a public string data
type method Size(). This method implementation will be provided in the
child classes because we want to achieve abstraction. This way, the
implementation of the Size() method is hidden, which is a characteristic of
the abstraction principle. Then, we created three subclasses that inherit from
the superclass Ball, and these classes are TableTennisBall, TennisBall, and
BasketBall. Each child class has its own override implementation of the
Size() method. TableTennisBall class returns a "Small" string, TennisBall
class returns a "Medium" string, and BasketBall class returns a "Big" string
as a result of the Size() method. Now we get all of this live and demonstrative



in the Main method of a Program class:

The abstraction demonstration is here. First, we will instantiate a List of Ball
data type objects. Since the Ball is an abstract class, it cannot be instantiated,
but it can be used as the class type when using the child classes. In this list of
Ball data types, we have added three objects. For every derived class, we
instantiated one object. They all inherit from the Ball class so that they can
belong to the list of Ball data types. After that, we would want to iterate
through the Ball list and write the size of each ball to the console. This can be
achieved with a foreach statement where we write each result of a Size()
method called over each object in a list to the standard output. Since there are
three objects in a list, there will be three lines of the output. In every iteration,
the Size() method is called over to that particular object. This Size() method
execution will jump into different implementation every time based on the
object type. So, it will return "Small" for TableTennisBall, "Medium" for the
TennisBall, and "Big" for the BasketBall. This way, abstraction is achieved -
we have hidden the explicit implementation of the Size() method. The output
of this program will look like this:



In the second example, we will demonstrate the abstraction using the
interface components in the program:

The first thing that we will declare is two interface components. The first
interface is the IModernEngine - with one string property, which is the
EngineType. The EngineType property has only the get accessor, which
means that it will be a read-only property in the class or classes that will
implement the IModernEngine interface. The second interface is
IModernTransmission. In this interface, there is also just one property. This
property is of a bool data type, and its name is IsAutomatic. This property
also has only the get accessor - the class or classes that will implement the
IModernTransmission interface will have a read-only property, IsAutomatic,
in their implementation. These interface components will serve as some kind
of type in this program. Let us move on to the code.



Here we have a ModernEngine class that implements the previously
exposed interface IModernEngine . It has one private
field, _numberOfCylinders , and the implementation of the EngineType
property from the IModernEngine interface. This property must have its
value set in the constructor because that is the only way besides the
initialization on the declaration level. The ModernEngine class has one
parameter in the constructor, and that is the int data
type numberOfCylinders . In the constructor, there is a number of cylinders
check. There are five valid possibilities that will result in the EngineType
property assignment. When four cylinders are passed, the property value will
be set to "Inline 4". Then, if six cylinders are passed, the property value will
be set to "V6".
Similarly, if eight cylinders are passed, the property value will be set to "V8";
if ten cylinders are passed, the property value will be set to "V10", and if



twelve cylinders are passed, the property value will be set to "V12". If there
is no corresponding condition that matches the valid number of cylinders,
then the Exception will be thrown with the message "Invalid number of
cylinders, unable to create Engine." If the property value is set and valid, the
private field _numberOfCylinders will also be assigned with the passed
value. 

Here, we created a class that will put interface IModernTransmission to use.
The ModernTransmission class implements this interface, which means that
it contains IsAutomatic property implementation. This read-only property is
also set in the constructor of the class.

In this class implementation, we will start to get more familiar with the
abstraction principle. The ModernCar class does not implement any of the
interfaces. This class contains next members: public property ModernEngine,
which is of IModernEngine data type (as mentioned earlier, the usage of the
interfaces in this program is to have a type role), and another public property
- ModernTransmission that is of the IModernTransmission data type. Both
properties are read-only because they have only the get accessor. We will
initialize their values in the constructor of the ModernCar class—the main
part of this class is the constructor and its implementation. The constructor
takes two arguments, one of IModernEngine type and the other of
IModernTransmission type. This means that any object of a class that
implements these two interfaces can be passed when creating an instance of a



ModernCar class. This way, abstraction is visible because there is no explicit
type that the ModernCar takes as an argument of its constructor. It is not
tightly related to some type. Every object of the type (class) that implements
these two interfaces can be passed here, and an instance of a ModernCar
object can be created. In the body code part of a constructor, there is just a
property assignment with the objects that are passed when creating an
instance of a ModernCar class.

Besides the ModernCar class, here we exposed a  ClassicCar 
class. This class has two public properties: a string EngineType and
a bool IsAutomatic. Again, these properties are just read-only. This
class has a classic constructor, with no flexible assignments like
that of the ModernCar class. The constructor here, takes two
parameters, the integer value  numberOfCylinders  and a bool



value  isAutomatic . The IsAutomatic property is assigned directly,
which is not the case with the EngineType property. We have the if-
else conditions that control the value that will be assigned to the
EngineType based on the isAutomatic parameter passed. The
conditions are the same as in some of the previous class
constructors (.."V6", "V8", "V10"..). There is also an Exception
situation if there is no corresponding condition for property
assignment. 

Now, let's bring all of this together and demonstrate the use of
interfaces and what they bring here.

A standard Main function inside the Program class brings us the next logic
this time: The first thing here is the creation of the ClassicCar object instance.
The ClassicCar constructor is invoked with the six cylinders and a true value
for IsAutomatic property. The EngineType property assigned to this object is
"V6" because of the parameter passed while creating an instance of the
ClassicCar object. After this, we print the EngineType of the previously
created object to the console output. The "V6" should be seen on the screen.
The work with the ClassicCar class is finished, we are now moving to the
ModernCar class, which is of much more interest to us at this moment. We
are now going to create a ModernTransmission object. This object is created
with the true value passed to the constructor. This results in a true value
assignment to the IsAutomatic property of the ModernTransmission object
that is created. Since the ModernTransmission class implements the



IModernTransmission interface, it can be assumed that
the modernTransmission  variable is of the IModernTransmission type.

Next, the ModernEngine object is created with the six cylinders assigned to
its EngineType property - "V6". For this object, we can apply a similar
logical conclusion regarding the ModernTransmission object. So, the created
object variable modernEngine can be assumed that it is of the
IModernEngine type. This is because the ModernEngine class implements
the IModernEngine interface. Now, everything is prepared for creating a
ModernCar object. The ModernCar object requires an object of an
IModernTransmission type and the object of an IModernEngine type in order
to be instantiated.

Let's now create a ModernCar object. We will be doing this by passing
the modernTransmission  object and the modernEngine  object to the
instance creation. This invokes the constructor of a ModernCar class. The
two passed objects are then assigned to the public properties of a ModernCar
class, and the modernCar  variable object is perfectly created. In the end, we
then print the modernCar  engine type to the console - this is done by
accessing the ModernEngine property, and accessing the EngineType
property of a ModernEngine property. The value that should be printed is
"V6" just like in the case of the classic car object. The output of this program
is seen below:



6.4 - Polymorphism
Polymorphism is an object-oriented programming paradigm that stands for
the usage of something with multiple forms. What this means is that one
property or a function with the same name can have multiple different
functionalities - implementations. In fact,  the ability of a class to have
multiple functionalities with the same name is Polymorphism. It is the fourth
and probably the core paradigm in object-oriented programming concepts.
Polymorphism happens when multiple classes are related to each other and
are all connected by the inheritance principle. Inheritance and Polymorphism
are tightly coupled; they go together in most cases. Inheritance enables fields,
properties, and methods inheritance of the other classes, and the
Polymorphism is there to use these members to perform different jobs. This is
the thing that allows programmers to execute a single action in a few
different ways. Polymorphism can be static or dynamic. Static Polymorphism
is also known as the compile-time Polymorphism, and Dynamic
Polymorphism is called the runtime polymorphism. Static Polymorphism
happens in the compile-time, while that of dynamic happens in the runtime.
The example of the compile-time Polymorphism is given below:



In this example, there is a Printer class that contains three methods. Each of
these methods has the same name - PrintData. The only difference between
them is the parameter. The first method takes a string data type parameter; the
second takes an int data type parameter, and the last method takes the double
data type parameter. Each method does the same job - it prints the value of
the passed parameter to the console output. How does the compiler allow us
to create three methods with the same name? Well, this was mentioned in
previous chapters. The compiler won't let you create multiple methods with
the same name and with the same parameter types in that same order. The
uniqueness of the method is not just its name; it also includes its parameters -
the whole method signature . The thing you see here is called method
overloading, which was explained in some of the previous chapters.
Overloading represents the polymorphism in compile-time. In this case, the
same method name but different implementation. In the Program class, the
Main method contains an instantiation of the Printer class. The printer 



object then calls the PrintData method three times, each time with the
different parameter type. The first call is with the string argument passed, the
second is with the int argument passed, and the third is with the double
argument passed. Based on the parameter type, the program will recognize
the method of implementation it should enter in the Printer class. This
program has the output that can be seen below:

The second type of polymorphism is the dynamic polymorphism, which
happens in the runtime. An example of dynamic polymorphism is given
below:



Here we have one base class whose name is Vehicle . This class then has a
public read-only property whose name is IsAutomatic . In the constructor,
you will notice that we only assigned the value to this property. Below
Vehicle class, there are two more classes whose role is to serve as the child
classes of a Vehicle. The first subclass is a Car  class. It inherits from a base
class, and also contains one property of its own. This property is called
TrunkCapacity, and it is also a read-only property. A Car class contains the
constructor, which takes two arguments; the _TrunkCapacity, and bool value
_IsAutomatic. Note here that besides the normal constructor inscription, there
is a :base(_IsAutomatic)  suffix to it. The base  keyword signifies that the
superclass constructor should also be invoked, then we pass the _IsAutomatic
parameter to it. This way, the object of a Car class will set the initial value of
its superclass read-only property IsAutomatic . The _TrunkCapacity 
parameter is normally assigned to the TrunkCapacity property of a Car class
in the body code part of its own constructor. The Truck  class also inherits
from a Vehicle class and has the same functional logic as the Car class. This
class also has one personal read-only property BedCapacity and the
constructor of its own. The constructor works in the same principle as the Car



class. It takes two arguments, _BedCapacity  and _IsAutomatic  bool value.
The base constructor is also invoked by passing the _IsAutomatic value to it,
and the BedCapacity is normally assigned in the Truck constructor. Let's put
this all to work in the Main method of a Program class.

First, we created a Car object by passing 1000 to the car trunk capacity and
true value for the information about whether the car is automatic. After that,
we create a Truck object by passing 3000 to the truck bed capacity and false
value for the information on whether the truck is automatic. After the objects
are instantiated, we then print the trunk capacity of the car and the bed
capacity of the truck, line by line. The output of this program will then be:

Another example of dynamic polymorphism would be:



In this example, we have one class that acts as a superclass - the Sport  class.
Inside that class, there is one void method Info (), that does the printing to the
output. A simple print of the message: "The sport message.". You probably
noticed one thing you did not see until now - the virtual keyword.
The virtual  method represents a method that could be redefined in the child
classes. The implementation of a virtual method exists in the superclass as
well as in the derived classes. It is used when we have a default functionality,
and when we want to extend or change that functionality in the child class.
This virtual method can be overridden in the subclass, but it is created and
initially defined in the superclass. These steps are next: first, create a virtual
method - mark it with the virtual keyword in the base class, and then override
that method implementation in the derived classes using the override
keyword. It is obvious that when a method in the derived class have the same
implementation as in the base class, it is not needed to override it. When
called, the program will jump to the base class implementation of the method.
So the conclusion is that overriding the virtual method in the derived classes
is optional. Unlike in the abstract methods, where you must override and
implement the method. The overridden method provides a new and different
implementation, which is the best example of polymorphism. It is important
to say that we cannot override non-virtual methods. All of the methods in C#
are non-virtual by default. Let's go back to the example. So, in our base class,
we have one virtual method which can be overridden in the derived classes.



Besides the base class Sport, there are two other derived classes - Football
and Basketball. The Football class overrides Info() method from the parent
class and writes the "The best sport is football." message to the console
output. The Basketball class overrides Info() method from the parent class
also and writes the "The best sport is basketball." to the console output. Let's
see how all this works together in one method:

Here is our well-recognizable Main method inside the Program class. We
instantiate three objects at the beginning, all three of the Sport class type. The
first one is instantiated as the base class object Sport. The second object is
instantiated as Football, and the third object is instantiated as a Basketball
object. Remember that all three objects belong to the Sport class type. Sport
belongs to the Sport class type because it is the core class, while Football and
Basketball also belong to the Sport class type because they inherit from the
Sport class. After the objects are created, we can execute some functionality
over them. First, we run the Info() method over the core sports object, then
we run the Info() method over the football object, and lastly, we run the
Info() method over the basketball object. The first call will jump into the
virtual method implementation in the base class, the second will jump into
the Football class overridden method, and the third call will execute the
Basketball class overridden method. It will all result in the next output:





Chapter 7: SOLID Principles
SOLID principles represent a way of what programmers should follow while
programming in C# programming language. The first five object-oriented
design principles are SOLID design. When following these principles
combined, they make everything easier while coding. They are making it
easy to develop the application or any kind of software that is easily
susceptible to changes. If the programmer or the team follows these
principles, maintaining and extending the code will be far more comfortable.

Following the SOLID makes developers avoid lousy coding practices, and
this makes the system comfortable for refactoring. SOLID makes the
software to be suitable for adaptive and agile development. If not coding in a
SOLID design, every small request for a change in the code might become
really stressful and painful for a developer. If the application design and
architecture are going in the wrong direction, every change, even the
smallest, could cause significant problems and big changes in the particular
software. That is not what is supposed to happen. The changes and new
features are part of the software development, they will always exist, and they
are not to be blamed.

The most common mistakes that have been made over the course of
development is adding more responsibilities to a class that is not suited
for that. It is bad to add more functionality that is not related to a certain
class. Also, when developers force the classes to depend on each other, at
some point, a change in one class will affect the other class also. So, making
the classes and components tightly coupled is a journey to failure. The
duplicate code all over the application is also something that should be
bypassed. These are just some of the mistakes that are slipping through the
developer's hands. The solution to all of these potential problems is choosing
the right architecture of the application from the start, following design
principles throughout development, and choosing the correct design patterns



in order to produce software based on its terms.
What you should also know are different design patterns and what
they represent. Design patterns represent a general solution to the
most commonly repeated problem in the software development
design. It is a template on how to solve some obstacles. So, it does
not represent a finished code that you can implement into your
software - it is just a description of how you should do it. The best
practices that are adapted by experienced software developers are
design patterns. Every design pattern defines the problem, the
solution, the moment of applying the solution, and its potential
outcomes. Each of them gives you some implementation examples
and hints on how to achieve them. It would be good if you could
read more about design patterns, and try to implement them on
your own for better understanding. For now, let's return to the
SOLID principles. 
There are five principles included in this paradigm. Each of them
represents a letter in the SOLID term.  S  stands for the Single
Responsibility Principle (SRP),  O  stands for Open-Closed
Principle (OCP),  L  stands for Liskov Substitution Principle
(LSP),  I  stands for the Interface Segregation principle (ISP), and 
D  stands for Dependency Inversion Principle (DIP).

7.1 - Single Responsibility Principle
Single Responsibility Principles says, "Every software module should have
only one reason to change." What this means is that every software module,
structure, class, and component in the application should only have one job to
do. Every little thing in that module should have just one purpose. This
means that a particular software component should not contain multiple
essences in it. It should serve only one duty. It does not mean that the
software modules that you are building should only have one property or one



method. There could be as many members as needed as long as they serve a
single responsibility. This principle provides us with the best way of
recognizing classes at the start of the prototype phase of a software product.
It makes you think of all the directions some software modules can change.
Only when there is a clear understanding of how software should work can
the best separation of responsibilities be achieved. Let us look at the
examples:



In this small, but very clear software module, we have a clear design
provided. There are three classes that provide the same responsibility. Car,
Engine, and Transmission classes are the classes that obviously represent one
responsibility. They all serve the car with mechanical object detailing. Engine
and Transmission are the Car "parts," and the car object is made of the
Engine and Transmission object. In this module, there are no different types
of behavior and logic. Every part is about car detail functioning. The Program
class just puts all of these classes together in one functioning module and
representation. In the Main method, there is, first, the creation of the
submodules, which are the Engine and Transmission objects. After it, an
instance of the Car is created using those previously created objects. In the
end, there is a print of the car engine type information to the debugging
console.



Let’s jump to the second example:

In this example, you can clearly see one class Worker. The Worker class has
three methods inside, and as you can see, this class does not serve one
responsibility. There are methods for database actions, and there is one
method that has nothing to do with the previous responsibility. The third
method is responsible for creating a document that prints information about
some workers. This class does not follow a single responsibility principle, so
let us refactor this code to get the SRP on the way.



Now, this is better. Here we split the logic into two classes. One class is for
the execution of the database actions, creating and deleting the worker entity.
The Worker class now serves only one responsibility, and that is handling the
database actions.
The second class, which is known as the Reports class, is created to handle
the reporting and documents section. We moved the document generating
method to this class, and now everything looks perfect. Maybe tomorrow, the
client will ask us to generate some more types of documents. In that case, all
of the new methods related to the documents and reports will find their
belonging in the Reports class. For example, the client asks us to produce
functionality for generating the word document with all the Worker
information in it. Below the PDF creation method, we would implement the
WORD creation method, and everything will stay according to the single
responsibility principle.

7.2 - Open-Closed Principle
The definition of the Open-Close principle is that the software modules,
classes, and components, should be open for extension, but closed for
modification. This principle says that any software module should easily be
able to extend its functionality without changing the core implementations



that already exist. Any application or software module should be flexible and
adaptable for changes. Every software requires changes many times through
the development cycle; that is why every modification should always be
double-checked before completing it. The open-closed principle states that
the current behavior of the application or feature can perpetually be extended
without having to transform its present implementation. So, new features
should be implemented by writing the new code and leaving the existing code
as it is. This is because if we change the current implementation, we may
make a bug in the current feature, which was previously stated as the good
working one. Following the open-closed principle, we can reduce the risk of
crashing the present implementation of some features. Also, it is desirable to
have every method and feature unit-tested, so that if we change the existing
implementation somewhere, it is also often needed to change the unit test,
and this extends the development time. Inheritance is always something that
leads us to fulfill the open-closed principle. Sounds good, let's jump into the
examples:



In this example, we have three classes of interest. One is the superclass
Vehicle, and the other two, Truck and Car are the derived classes. In the
superclass, there is one property that is of big interest here. This property,
called IsAutomatic, could be used by the objects of the derived classes, as
well as in the core class - the superclass. With further implementation, while
the lines of code are getting bigger and bigger, there is a big potential to have
many references to this property because it could be used by three class



objects (Vehicle, Car, Truck). If there is a need for some modification in the
derived classes, it would be fine to add properties and methods to describe
those objects further. This means that they are opened to the extension.
However, if there is a need for changing anything about the IsAutomatic
property, it would create a big mess, and refactoring through every reference
to that property should be done. So, as you can see, that would not be such a
smart idea. The open-closed principle is reflected in this property. This
property is closed for modification because it could potentially lead to
enormous refactoring. Instead of changing the IsAutomatic property in the
superclass, the new property should be added to the superclass, and the
derived class constructors should be extended. This actually depends on what
you are trying to accomplish. Maybe you want to extend only one derived
class; in that case, you would add one property only in its child class.
Let us introduce another example:
Let us assume that there is a next problem: the company has employees –
software engineers, and the director needs a program to calculate the total
cost of all the salaries he needs to pay to the employees. That is easy; the
implementation could be like this:

This looks great, and it works correctly. For now, there are no issues, and the
program does not violate the single responsibility principle. But the company
has different types of employees, and they all receive different salaries. We
did not think about that. The information given is that there are two types of
employees - the software engineers and the QA engineers; their salaries are
calculated differently, so we would need to implement that case. This won’t



be a problem though, as we will do something like this:

We are done with the changes here. We have managed to introduce the QA
engineer salary calculation into the program. Now we can also add a Manager
salary calculation here. That would be done by adding another if block into
the TotalSalary method of the TotalSalaryCost class. But there is one big
problem here. Every time we add a new position and its calculation formula
for the salary, we also need to alter the TotalSalary method implementation.
So, this means that the TotalSalaryCost class is not closed for modification,
and we must modify it every time we get a request for change. How can we
implement this better to avoid this situation? Generally, we can introduce the
abstractions; we could implement this by using the interfaces or abstract
classes and decouple the tight relations in the concrete class code. It would
make every new request easier to handle without changing the core
calculation method. Let us choose the abstract class component in order to
solve this situation in the best way possible. The final solution would be:



Here, we introduced one abstract class that is called Salary. This class
contains only one method, which is abstract - TotalSalaryCost. The classes
SoftwareEngineerSalary and QAEngineerSalary are still here in the
implementation. We have made the changes by making those two classes the
subclasses of the Salary abstract class. So, the Salary class became the base
class, and SoftwareEngineerSalary and QAEngineerSalary are now derived
classes. In the derived classes, we have implemented the parent class abstract
method. This way, employee type has its own total salary calculation
implementation inside its own class. After these changes, TotalSalaryCost
class is much simplified. There is just one foreach statement where we have
only one line of code. In each iteration, we just call the TotalSalaryCost()
method over the current object in the loop. The objects in a loop are all of the
Salary class type. The calculation of the salaries will jump into the correct
implementation based on the object that is currently in the iteration cycle. All
of this will be added and saved inside the cost  variable. The result will then
be returned through the variable cost, where the total amount is stored. Now,



the open-closed principle is fulfilled. Each time we get a request to add a new
employee and his salary calculation inside the program, we would just create
a class for it and make it a subclass of a Salary class. We will then implement
the abstract method, and that would be it. The TotalSalaryCost class, where
the iteration and summing of all salaries are happening, will stay untouched,
and this is the goal of the entire process. 
All of this could also be achieved with the use of interface. The modified
solution using the interface instead of the abstract class is given below:

Instead of the abstract class, we now have an interface know as ISalary.
Inside this interface, there is one method - the same method which was inside
the abstract class in the previous example. The derived classes of the prior
example are now implementing the ISalary interface, which means that they



have their own implementation of the TotalSalaryCost() method exposed in
the interface. In the TotalSalaryCost class, everything stayed the same; the
only thing that is changed is the type of salaries variable, which is passed as a
parameter to the TotalSalary method. Now, instead of the abstract class as a
type, we now have an ISalary interface that acts as a type for the classes that
are implementing it. The result is completely the same, and the open-closed
principle is fulfilled once again. Awesome, isn't it?

7.3 - Liskov
The LSP or the Liskov Substitution Principle says that all of the derived
classes must be completely substitutable for their parent class. What this
means is that if there is a class A that inherits from B, then the A class can be
completely substitutable by class B. This principle is stating that all of the
child classes should not affect the role of the superclass. So, derived classes
should be entirely substitutable for their parent class. The Liskov Substitution
Principle represents the extension of the previous principle - the open-closed
principle. What this means is that the developer should ensure that the child
classes are precisely extending the parent class without changing their
behavior. Let us demonstrate this with an example:



In this example, we can assume that there is no possible way that any of the
members of the derived class can harm the behavior of the superclass. From
the derived class, we can access both the BedCapacity property and the
IsAutomatic property from its parent class without any potential abuse or
problem. Every member is suitable for usage, and no exceptions are likely to
happen. The problem could happen if we add one virtual method to the base
implementation and override that method in the derived class, but this will
throw NotImplementedException(). It would look something like this:



In this way, which is significantly wrong, we have the next logic: In the base
class Vehicle, we added a virtual method with its core implementation - the
Type() method. In the derived class, we have overridden that method but with
no implementation. We have thrown a NotImplementedException() in the
body of this method. This is wrong in many ways, and one of them is
breaking the Liskov Substitution Principle. This is because, if the Type()
method is called over the Truck object, it will throw an Exception. So, it is
not substitutable for the parent class Vehicle. It impairs the superclass
functionality that is implemented, unlike the derived class functionality,
which is obviously not implemented. As a result of this program, we will get
an Exception because we are trying to print the Type() to the console line
over the Truck class object. Another example would look like this:



In this example, we have a base class Worker that is marked as abstract.



Inside this parent class, there are two virtual methods with their core
implementations. The first one returns the details about the task on which the
worker is currently working on. The second method returns information
about the worker itself. Then there are two classes that represent the child
classes of the Worker class. One of them is the QAEngineer class. Inside the
QAEngineer class, there is the overridden implementation of the methods
from the superclass. They both have normal definitions, so everything looks
fine here. The other derived class is the SoftwareDeveloper class. In this
class, there are also two overridden methods from the superclass. But here we
can see one problem. The GetWorkerDetails method does not have the
implementation; it throws the Exception. For some reason, details may not be
available for preview for the software developers.
In the Main method, there is an iteration through the list of Worker type
objects. In each iteration, the GetWorkerDetails method is called over the
current object. This looks good for the compiler, but what will actually
happen? When the SoftwareDeveloper object gets into the iteration, and the
GetWorkerDetails method is called, the Exception would be thrown. This is
not what we want to happen, so we must make a derived class completely
substitutable for the superclass, which is not currently the case. The Liskov
Substitution Principle is violated in this example. So, this solution would be
next: introduce two interface components, one will contain the
GetWorkerDetails method - the IWorker interface, for example, and the
second will contain the GetTaskDetails method - the ITask interface. Suitable
classes will implement none, one, or both of the given interfaces in order to
accomplish the Liskov Substitution Principle. In this case, QAEngineer will
be modified to implement both interfaces since it needs both methods to be
implemented. The SoftwareDeveloper class will implement only the ITask
interface because it only has the definition of the GetTaskDetails method.
This way, the Liskov Substitution Principle is fulfilled, and no violations
would appear.

7.4 - Interface Segregation Principle
The Interface Segregation Principle states that entities should not be forced to
implement interfaces they don't use. If possible, it is a lot better to create
many simple and small interfaces that are based on a particular group of
methods than to create one big interface with tons of methods that are not
grouped at all. The interface should represent something that is tightly related



to the entity that is using it. So, the interface must be defined based on the
entity or entities that should implement it. The classes should not be obliged
to depend on the interfaces that they don't use. Similar to that of the classes,
the interfaces should have a particular responsibility. This could be referred
to as the single responsibility principle. The class is not supposed to
implement an interface if it is not sharing its complete design. While the
interface is getting bigger and bigger, there is also a high chance of including
the methods that not all implementers need to implement. For this problem,
the interface segregation principle detects the solution. An example of correct
design in ISP aspect would be:



In this example, we have presented a correct way of design when talking
about the interface segregation principle. There are two interfaces, and they
are the BedCapacity and TrunkCapacity interface. The BedCapacity has one
read-only property of int data type – BedCapacity, and the TrunkCapacity
interface also contains one read-only property of int data type - the
TrunkCapacity property. The Car class implements the TrunkCapacity
interface because a Car class only needs the implementation of the
TrunkCapacity property. Similarly, The Truck class implements the



BedCapacity interface since it only needs BedCapacity property to be
implemented. This way, the interface segregation principle is totally fulfilled.
We have two interfaces which are used at their maximum potential. Each of
them is implemented only by the class that needs a particular implementation.
We could create one interface and make both classes implement it, but that
will not be correctly designed. In that single interface, there would be both
properties that are now split into two interfaces. This means that both classes
must implement both properties, which is not needed at all. The Car class
needs only the TrunkCapacity implementation, while the Truck class needs
only the BedCapacity implementation, but that did not follow this principle.
Another example could be something like this:

In this example, there is one interface IEmployee, and this interface contains
two methods - CreateDevelopmentTask and WorkOnDevelopment task. Then
we have a Programmer class that implements the above interface. Both
methods from the interface have their implementation in the Programmer
class. With this, everything now looks perfect. Later, we get a request to
insert a Tester class because testers could also be the employees in the
company. Fine, we will create a Tester class and make it implement the
IEmployee interface.



Looks good. The CreateDevelopmentTask method has its implementation;
the Tester is also able to create tasks for development. But what happens with
the WorkOnDevelopmentTask method? The Tester obviously is not supposed
to work on the development tasks, so the WorkOnDevelopmentTask method
throws the not implemented exception. However, this does not follow the
interface segregation principle. So, we must break this logic into two
interface components and make their usage correct. Then it will look
something like this:



Great! It looks better now. The interface segregation principle is now
fulfilled. We have been able to divide the IEmployee interface into two more
specific interface components. The first one is the program interface, which
contains both methods from the IEmployee interface. The second method is
known as the ITester interface, and this interface contains only one method,
and that is the CreateDevelopmentTask. It does not have the
WorkOnDevelopmentTask method because the Tester class does not need it.
The Programmer class will now implement the IEmployee interface, and it
will have full implementation of both methods from the interface. The Tester
class will implement the ITester interface that contains only the
CreateDevelopmentTask method. This way, we have been able to organize
the interface usage better. There are no methods without implementations in
any of the classes. Every new method that will be needed to add to either
Programmer or Tester class will find its way to the correct interface, and
nothing will be unused. The interface segregation principle is completed in



this example after a few modifications. The code is ready for new features,
and it is easily able to modify the behavior.

7.5 - Dependency Inversion Principle
"High-level modules should not depend upon the details but on the
abstraction." This sentence represents the dependency inversion principle.
What this means is that there should not be tight coupling between software
modules and components. Everything should be developed with abstraction
characteristic to avoid tight coupling. The high-level components are
commonly implementing the business layer of a system, unlike the low-level
components which are responsible for the more detailed procedures. The
main thing here is that we must maintain high-level and low-level modules
loosely coupled. In order to do so, there should not be an implementation that
would make the two modules identify each other.
Tightly coupling of the modules is when a high-level component knows a lot
about other components with which it interacts. If there is tight coupling,
there is also a big risk that the changes to one module or class will possibly
break the logic in the other module or class. There is a technique for the
implementation of the dependency inversion principle in C# programming
language, and it is well-known as Inversion of Control (IoC). The inversion
of control could be implemented by using abstract classes or interface
components. This technique removes the dependencies between classes and
modules. The low-level components should follow the commitment to a
single interface, and the high-level components are supposed to use modules
that are implementing that particular interface. Let us start with the examples:



In this example, there is an interface called IVehicle. Inside that interface,
there is one property, which is the IsAutomatic read-only property. This
interface is implemented by two classes. The first is known as the Car class.
This class implements IsAutomatic property from the interface and also
contains one property of its own. The property that the Car class contains is
the TrunkCapacity. Both properties are needed for instantiating the object of
a Car class. The constructor takes two parameters, one for the TrunkCapacity



and the second one for the IsAutomatic property.
The Truck class does something similar. It also implements the read-only
property IsAutomatic from the interface, and it has one property of its own -
the BedCapacity. Like in the previous class, here we also need both
properties in order to create an instance of a Truck object. It is because the
constructor takes two parameters, one for the BedCapacity assignment, and
one for the IsAutomatic property assignment. In the Main method of a
Program class, we have created an empty list of IVehicle elements. After that,
we instantiated two objects, one object of a Car class type, and the other
object of a Truck class type. Each of them implements the IVehicle interface
so that they could be recognized as IVehicle type. Due to this, we can then
add those objects into the previously created list, and both of them are added
to the list. After that, we print into the console line, the information about the
vehicles from the list. We are printing the IsAutomatic information for both
of the added objects, and also the TrunkCapacity for the Car object and
BedCapacity for the Truck object. We are able to access this information by
casting the object of the IVehicle type into the explicit object, and this is done
for the TrunkCapacity writing and the BedCapacity writing.
For the TrunkCapacity information, we must cast an object to the Car object,
while for the BedCapacity, we must cast an object to the Truck object. This
program is following the dependency inversion principle because there are no
loosely coupled components. For example, if we want to add a new class
known as Bicycle, we would just create that class and force it to implement
the IVehicle interface. The Bicycle class would have its own members, and it
would implement the IsAutomatic property from the interface. This
modification is not forcing us to change anything in the previously written
code. So, that means that the components do not depend closely on each
other. The Bicycle class object would be created and added to the list in the
Main method. After that, we could print the info about the Bicycle object.
None of the statements which already exist would need to be changed. The
code in the Main method of a Program class is loosely coupled with the
components such as the Car and Truck.
Now, let’s check out the second example:





In this example, we have an interface called IShape, and inside this interface,
there are two methods known as Draw() and Stop(). Below that interface, we
have one class that implements the IShape interface - Rectangle class. This
class has the implementation of the two methods from the interface.
In the Draw() method, the program will print that it is drawing the rectangle,
while the Stop() method prints that the program stopped the drawing of the
shape. The way the Rectangle class works is the same way the Circle class
works. There is an implementation of both methods of the interface. The
Draw() method prints that the program is drawing circles, and the Stop()
method prints that the program stopped the drawing. So, these classes
represent both the drawing of shapes and the stopping of drawing shapes. It
describes the control on when to start drawing and when to stop drawing.
Below these classes, there is a ShapeManager class, which actually does the
whole thing about the dependency inversion principle. In this class, we have
one private field _shape , which is of IShape type. We assign the value to this
private field in the constructor. This constructor takes one parameter, one
IShape type object, and sets it to the private field value. This is
called dependency injection . There are a few types of injection; they will be
all covered in the Dependency Injection chapter later. For now, it is good to
know that this is the constructor injection. In the run-time, when the object is
created, we inject the value through the constructor. It is not known which
kind of object will be set here until the injection.
In this case, two possible object types could be injected. The _shape field
could become either a Rectangle object or the Circle object. Those two
classes are currently implementing the IShape interface. After the
constructor, there is a method called DrawShape(), whose function is to
execute the Draw() method of the _shape variable. While looking at this
method, we realize that it is not possible to know which implementation of
the Draw() method will happen since we do not know the object that will be
injected into the _shape variable. It could do the drawing of the Rectangle
and the Circle.
Below DrawShape() method, there is also a StopDrawing() method, which
calls the Stop() method of the _shape variable. It works on the same principle
as the DrawShape() method. The implementation of the StopDrawing()
depends on the injected object inside the variable _shape. Let us put all of
these together. In the Program class, in the Main method, we are creating an



instance of the Rectangle() class and putting it into the IShape variable
type rectangle . Next, we instantiate an object of ShapeManager class,
passing the rectangle variable to the creation. At this moment, the injection
happens, and the rectangle object value, which is a Rectangle class object, is
assigned to the _shape field inside the ShapeManager class object. After that,
we then call the DrawShape() method over the shapeManager  object. This
does the Draw() method of a Rectangle class because the object of the
Rectangle class is injected into the private field of the shapeManager. So it
will write "Drawing rectangle..." to the console output. After the drawing, we
called the StopDrawing() method over the shapeManager object. This
resulted in calling the Stop() method from the Rectangle class as well because
of the reason that was explained above. So it will write "Drawing rectangle
stopped." to the console output. You have noticed the commented line that is
creating an instance of the Circle object. If you uncomment that line and put
the circle object into the ShapeManager injection, you would get different
values written to the standard output. These values will be from the Circle
class method implementations. This example is showing the dependency
inversion principle at its finest as there is no tight coupling of the modules.
For instance, we could easily add one more class known as Triangle, which
would also implement the IShape interface. Then the Triangle object would
also be possible to inject into the constructor of the ShapeManager class, and
nothing in the Main method should be changed. Loose coupling is achieved.



Chapter 8: Advanced Topics
In the advanced chapter, we will try to teach you how to handle more
complex C# programming techniques. You will also learn more about what
asynchronous programming is. Furthermore, you will get familiar with the
parallel programming in C#. We will teach you other things like LINQ query
syntax in C#, Dependency Injection design pattern, Mappers, and Object-
relational mappers. By the time you’re done with this chapter, you will be
fully ready for some C# coding and testing your skills. Everything after this
chapter depends on you. Enjoy the programming, and let's go!

8.1. - Asynchronous Programming
Asynchronous programming represents a way of handling the events in the
program. It happens when a single unit of work that represents some jobs or
events runs separately from the main application thread. After execution, the
event job will notify the thread that made the call about the success or failure
execution. You are probably wondering when to use asynchronous
programming and what kind of benefits it applies to your software. The
biggest benefit of using the asynchronous programming technique is the
better responsiveness and performance of a software. The operation, which is
marked as asynchronous, is always running independently of the main
process execution.
For example, in C# programming language, a program starts executing the
code from the Main method, and after everything is finished, the program
ends when the Main method returns the value. All calls run sequentially, and
every time, one operation waits until the previous operation finishes its job.
The way asynchronous programming is done in C# is slightly different.
Here we are going to demonstrate the main principle. If you want to clarify
the method to be asynchronous and force it to do the work asynchronously,
you need to put the async keyword next to the access modifier. After that,
you can call this function asynchronously. After you have prepared your
function to work asynchronously, you would probably want to call it at some
point. This is done by writing the keyword waiting in front of the method
call. This means marking it to execute asynchronously.
Before getting to the examples, there are few things you should know. In the



C# Framework called .NET, there is a class known as the Threading.Task,
and this class lets you create event tasks and make them run asynchronously.
A task is something that represents the object in which some jobs should be
done. The task is responsible for letting you know if the operation has some
results. It is responsible for the completeness of the job. It is also essential to
know what Threads are. The C# .NET framework contains thread-associated
classes in the System.Threading namespace . It contains a set of components
that are needed for asynchronous and parallel programming. A Thread
represents the small set of executable instructions.  Task  represents the
return type of an asynchronous method. Now, let us demonstrate this with an
example:

In this small program, there is a simple demonstration of async programming.
As always, there is a Program class with its Main method inside. Besides the
Main method, there is one async method; an async task execution. This Task
returns a string in its result property. Inside the body of the SomAsyncCode
method, there is an awaited call for the Task.Delay method. This method
waits the amount of time that is passed to the parameter before it returns the
control to the calling thread. The amount of time is considered to be in
milliseconds. So this Task will wait 3000 milliseconds, or 3 seconds before it
returns the result string "All done!". In the Main method, in the beginning,
there is a simple output to the console saying "Hello World!". After that,
there is a call to the Task defined below and the assignment of its result to the
variable response. In the end, there is a print to the console output of the
result returned from the asynchronous Task. What will actually happen here?
You will see the "Hello World!" output to the console, and then there would
be a delay of three seconds before the code continues the execution. After



three seconds, the new output will be visible in the console. Let us run the
program and show you the results:

Here is the "Hello World!" message. Wait three seconds: one, two, three.
Boom! The final output is down:

After three seconds, we have got the result of the async Task - the "All
done!" message, and the program came to an end. Let us demonstrate one
more example for better understanding:



In this example, there are two methods. The first method is an async Task
method, which sets one task for asynchronous execution. Inside this async
execution, there are one thousand iterations of printing the message "Async
print" to the standard output. In the non-async method, there are two
thousand and five hundred iterations of printing the "Non async print"
message to the standard output. The Main method contains the call to each of
these methods, respectively. The first call is for the async method execution,
and the second is for the normal execution. You can notice that there is
no await  keyword in front of the AsyncMethod() call in the Main method.
This means that this method will run asynchronously, but the execution of the
statements below the async call will not wait until AsyncMethod() finishes its
job. This will result in two jobs working in parallel. The first is the Main
method thread, which will continue to the NonAsyncMethod() execution
after running the async task for the AsyncMethod(). It will result in parallel
printing of the different messages. There will be no order, as both threads will
work its own foreach statement in parallel. It will provide an output like this:



It resulted in total print disorder. Those two processes were "competing" on
who will execute the job faster. But, if we modify the program a little bit, we
can make it wait for the async method to finish. Below is the modified code:



Since the Main method could not be marked as async, we created one async
method ExecuteJob() and added the two methods from the previous example.
First, we created Task reference from the AsyncMethod() and put it inside the
task  variable.  The NonAsyncMethod and AsyncMethod are then executed.
AsyncMethod is awaited, and its result is printed after the execution is
finished. The output is seen below:

8.2 - Parallel Programming
The parallel programming principle is the model in which the execution of
the processes is divided into smaller pieces, which are to be done at the same
time. It is also called concurrent programming. It is realized by multiple
processors (or cores of the processors) in order to accomplish better
performance in the code execution. By splitting the operations to work
concurrently, the time of task completion is reduced, which is obviously
improving the performance, and the user's experience while working in a
certain application. With the processor evolving, as a hardware device, the
concurrent programming has taken its significant place in the programming.
The thing you must know is the concept of the Thread. A thread represents
the certain process execution for which a system is allocating the processor
time. In concurrent programming, one process can have multiple threads that
execute some action in Parallel if there are multiple CPUs or CPU cores in
the hardware. The better the hardware, and the CPU components, the bigger



the possibility to execute some code in Parallel and to have results faster than
in the usual technique. It is important to define a few terms in C#
programming language that are linked with parallel programming.
The ConcurrentBag  represents a collection class that is supporting the data
to be stored in some unordered manner. This class also supports the
duplicates, and it is a thread-safe class that allows multiple threads to take
advantage of it.
The Parallel  class is the C# built-in class that provides the support for loops
working in parallel execution. Every looping statement we have used until
now has been executing the code in a sequential way. The Parallel class
makes the loops execute their iterations in Parallel. There are also key
methods, such as Parallel.Invoke , Parallel.For , and Parallel.ForEach .
Now we jump to the example to furthermore explain the concept of parallel
programming.



This program consists of one class Program and its Main method. At the
beginning of the program, we initialize one ConcurrentBag collection of
integers. Below the ConcurrentBag collection, there is a simple List of int
values object initialization. The ConcurrentBag object is
called parallelIntegers,  and the List object is called listIntegers . After that,
we created an int variable and assigned value five to it. This variable is used
for populating the elements of both parallelIntegers and listIntegers variables.
This is done through the while loop, which iterates five times because, in its
condition, there is a decrementing of the numberOfIntegers  variable in each
iteration. The numberOfIntegers decrements each time the execution gets into
the condition of a while loop. The value of the previously decremented
variable is added to both the parallelIntegers and listIntegers collections. This
means that both collections will have the next elements - four, three, two,
one, zero. After the collections are populated, we are then ready to execute
some parallel code. The Parallel.Invoke method is then called. This method
takes an array of Actions as a parameter. The Action represents a Delegate,
which is encapsulating a method, and it does not take any parameter. It is
important to understand the Delegates first. A Delegate represents a pointer to
a method, and it is a reference data type, and this reference is a reference to
some method. The Action delegate can be used to pass a method as a
parameter and all of that is being done without declaring a custom delegate
itself. In this example, the actions are used with the Lambda expression.
What are Lambda expressions? This term in C# programming language
represents an anonymous function that contains expression or sequence of
statements or operators. The lambda expressions are using the lambda
operator =>. This operator means something like: "The left side goes to
something on the right side". The left side represents the input parameters of
the lambda expression, and the right side contains the code block that works
with the parameters passed on the right side. Lambda expressions are used to
replace delegates when needed.
Now, let's return to the example. Here, in the Parallel.Invoke method, we
have two lambda expressions that are used as Actions. On the left side, there
is nothing; no parameters. This means that no parameters are passed to this
lambda expressions. Both actions are supposed to execute in parallel. What
are the Actions doing? In the first Action code block, there is a loop over
each element of the listIntegers  collection. In every iteration, the Thread
execution sleeps for 1000 milliseconds. This means that every iteration will



wait for just one second before jumping to the next iteration. After the
execution of the five iterations in this listIntegers, the program will print out
to the console line "Linear is done" message. This means that the non-
concurrent execution of the loop has finished its work. That will happen after
about five seconds after the Action is invoked.
The second Action is a little bit different. Here we also have one lambda
expression that represents the Action. This lambda expression does not also
have any parameters passed to its code block. In the second Action, there is
an iteration through the ConcurrentBag collection - parallelIntegers. For each
element of this collection, the program sleeps for 1000 milliseconds (one
second). The main difference is that this loop is made concurrently. Every
iteration starts at about the same time and will be executed separately. The
code block of this loop also sleeps the program for one second. But, if five
iterations start at about the same time, and the job of every iteration is to wait
for one second, what will actually happen? The thing is that those five
separate processes will all start at the same time, and each of them will wait
for one second. This will produce the one-second wait for all of the five
iterations. So, this loop will be executed in about one second. We can
conclude that this second Action will be finished in one-second time, which
is obviously not the case with the first Action. The first Action will last about
five seconds because every iteration is executed sequentially and non-
concurrently. The final output of this program will be "Parallel is done"
message - after the approximate one-second wait, and then, "Linear is done"
message after the approximate five seconds wait. Let us run the program and
prove these statements.



The second Action finished the execution after about one second. Let's wait
for the first Action to finish its execution. One, two, three, four, five... Boom!

The second message is also printed to the console output, and the program
finished the execution. This way, we have demonstrated the parallel
programming concept. Pretty cool, right?

8.3 - LINQ
Language integrated query, better known as LINQ, represents query syntax in
C# programming language, and it is used for retrieval and filtering of the
different sources of objects. LINQ produces a single querying interface for



various kinds of objects and variables. This query syntax is integrated into C#
programming language, as well as in Visual Basic. For better understanding,
we will provide an example to further explain it. Therefore, you have SQL as
a Structured Query Language. SQL is used to get and save some data into the
database. It is a language designed to work closely with the database.
In the same way as SQL, the LINQ is used to get and filter different data
sources like collections, data sets, etc. There are many ways you can use
LINQ; it is used to query object collections, ADO .Net data sets, XML
Documents, Entity Framework data sets, SQL database direct and other data
sources by implementing the IQuerable interface. LINQ is like a bridge
between some data and variables in the program. Every LINQ query returns
objects as a result. It is good because it enables the use of an object-oriented
approach on the data set. When using LINQ, you do not have to worry about
converting the setups of data into objects. LINQ provides a way to query data
wherever that data came from. It supports the compile-time syntax checking,
so that if you make a mistake while coding LINQ, the compiler will inform
you immediately. LINQ allows you to query every collection such as List,
Array, Enumerable classes, etc.
We are heading to the examples now:



In this example, we have one class named Car. In the Car class, there are
three properties, which are the TrunkCapacity, IsAutomatic, and
IsTurboCharged. Every property represents read-only property, and their
initial state is set in the Car class constructor. The constructor takes three
parameters and assigns their values to the properties mentioned above. In the
Main method, we are creating a list of Car objects. The list of Car objects is
populated in the declaration part, creating five Car objects with different
values for the TrunkCapacity, IsAutomatic, and IsTurboCharged properties.
After that, we would filter the list and take only cars that have automatic
transmission. This will be done by using the LINQ query. We are creating an
object named carsThatAreAutomatic  and filtering the cars  list with LINQ.
Then we perform the Where  LINQ extension method to get the objects that
we need. How does it work? In the Where method, we are declaring an
iterative variable that will be used for filtering conditions.
The variable in this example is s . So, what the filter does next is that for
every s object in the cars list, it will grant us the object whose s.IsAutomatic
property is equal to true. This will, in turn, create a filtered IEnumarble list.
In order to make this a list of explicit type objects, we will do the simple
ToList() method over the filtered IEnumerable list. This will create an object
of List<Car> type and put it down to the carsThatAreAutomatic  object.
Now, we have the data that we need. In the end, we will iterate through the
newly created collection of Car objects and print messages to the console
output. For every object in the list, we will print "The car with the trunk
capacity of {certain capacity} is automatic". We know this because we
filtered the Cars and took only the ones who have automatic transmission.
The output of this program looks like this:



As you can see, there are two cars with automatic transmission and their
capacity is 100 and 300 respectively. You can check that in the creation of
the Car list at the beginning, as only the first and the third car have true value
for an IsAutomatic property passed in the object instantiation.
Another example is seen below:



In this example, we have a class named Person. This class has three
properties, which are Salary, FirstName, and LastName. Each Person class
represents one employee with its basic information. The object's properties
are assigned in the constructor. In the Main method, there is a creation of a
list with objects of the Person class type. We have added five Person object,
each with different salary amount, first name, and last name. The manager
wants to filter out everyone that has a salary greater than 3000, and these
people will be marked as seniors. We will do that with the LINQ query. As in
the previous example, we are filtering the people list with the Where
extension method . In this method, we are declaring that we want only the
Person objects that have a Salary greater than 3000. After the retrieval is
done, the ToList() method takes the filtered IEnumerable list into the Person
objects list. Now we have an object that is a list of Person class types, and it
contains only the people who have a Salary greater than 3000. This variable
is named seniors . Now the manager requests that he wants the total sum of
the senior salaries. We will then do that by creating a list of senior salaries
and then summing all of that values into one variable and end up printing it to



the standard output. The creation of the seniorSalaries  list will be done with
the execution of the Select LINQ extension method. The Select method is
used when there is a need for getting only certain property values from a
collection of objects. In this case, we need the Salary property value from
each of the objects inside the seniors  list. The Select method does the next:
for each x  object from the seniors  list, take x.Salary  value. This creates a
list of IEnumerable values. After the ToList() method execution, we
succeeded in creating a List<int> object that contains elements that are senior
salaries. Then we created a variable in which we will store the summation of
all of the senior salaries - seniorSalariesSum  variable. After this is done, we
have one more statement that will finish the work. The ForEach method is
done over the seniorSalaries list, which will gather and sum all salaries into
one variable seniorSalariesSum. In the end, the program will print the result -
seniorSalariesSum value to the standard output. The output of this program
will look like this:

This logic and solution to the problem could be much simplified, and the
senior salary sum could be done in just one line of code. That line will look
something like this:



After the Where  method is being executed, the Select  method would
follow, after which the List  will be created over which we could iterate with
the ForEach  extension method and do the sum calculation. This will
produce the exact same result. This big statement is just split into a few
smaller ones in the starting solution for better understanding. Let us close this
LINQ chapter with one more example:



In this example, we have modified the Person class from the previous
example. Now, the Person class contains the Salary property and
PersonalInformation class type property, and both are assigned in the Person
class constructor. The PersonalInformation class contains three read-only
properties. These properties are FirstName, LastName, and PersonalID.
FirstName and LastName are of a string data type, while the PersonalID is of
an int data type. These three properties are assigned in the constructor when
instantiating the object of PersonalInformation class. Now, lets jump into the
Main method of the Program class. Here, we are again going to create a list
of Person objects, and it is the same as in the previous example. Though, this
time is going to be a bit different because of the Class modifications. We are
creating five Person objects, each of them with Salary, and
PersonalInformation object assigned.

For every Person, we create a PersonalInformation object to instantiate the
Person object correctly. Each of the PersonalInformation objects has the first
name, last name, and personal ID passed to its instantiation. This way, we
created a bit more complex object that contains another class object inside.
Ok, we are ready to go. The manager asks us to find every first name of an
employee who is treated as a senior and has a personal ID of less than one
hundred and fifty. From the previous example, we have acknowledged that
the senior is the Person with a Salary greater than three thousand (3000). We
are doing something similar to the previous example, but this time, the
Person class has changed. It does not have the same structure as in the
previous example. So, we must analyze the class structure first and then
create a solution. The first step is that we must filter the Person objects from
the people list that have a Salary greater than 3000. After that, we must take
the PersonalInformation object from every Person object in order to find the
first names of all the seniors. Then, when PersonalInformation objects are
gathered, we must filter them and take only the ones with the PersonalID that
are less than 150. When that task is done, we can finally select the FirstName
property of all the seniors, make a list out of it, iterate through that list, and
print the FirstName values. All of this is done in the little complex LINQ
query from which we create a seniorsLT150  list variable. The first Where
method creates an IEnumerable list of seniors. Then, the Select method takes
PersonalInformation objects from seniors list and makes an IEnumerable list
of the seniors PersonalInformation objects. The second Where method is
working over the PersonalInformation objects from the previously created



IEnumerable list, and there we will filter the PersonalInformation object that
has PersonalID property less than 150. From there, we are doing the Select
method, which gathers the FirstName property value for each of the seniors
PersonalInformation objects that has PersonalID less than 150. In the end, we
then execute the ToList() method over the final IEnumerable that we created,
and the final product is the list of strings that contain the first name of every
senior with a personal ID less than 150. When all of this is finally queried, we
can run through the list and print those names to the console. The only senior
who will meet these criteria is Mike Dean, and his first name will be printed
to the standard output. The program console output is below:

8.4 - Generics

The principle of defining classes and methods with the placeholder represents
a Generic term in C# programming language. The main concept of the
generics is to allow every type in C# to act as a parameter to methods,
classes, interfaces, etc. When talking about collections, there is one important
limitation, and that is the absence of effective type checking. What this means
is that any object can be put inside a collection. This is because all class types
in C# programming language inherit from the base class Object. All of this
can evolve to a significant performance impact because of the implicit and
explicit type-casting, which is required to add or get the objects from a
collection. Type-safety is the basic definition of the C# as a programming



language, but this contradicts that claim. For this problem, the .NET
framework and C# programming language provides generics to create
classes, interfaces, methods, and structures programmatically. In the C# and
.NET framework, there is an extensive set of interfaces and classes which are
built-in. They are located in the System.Collections.Generic namespace, and
there you can find the implementation of the generic collections. 
Probably one of the most powerful features in C# programming language is
the Generics usage. With it, you can define the type-safe data structures. With
Generics usage, it is possible to create classes and methods that lack the data
type until the class or method is declared and instantiated by the client service
code implementation. The Generics are powerful because they decrease the
need for boxing, unboxing, type-casting the objects, etc. The only thing that
is specified in the generic class creation is parameter types. The boxing and
unboxing terms are probably something you should also learn when dealing
with the C# programming language. Boxing represents the execution of
conversion of the value type to the object type, or to the interface that is
implemented by this value type. For example:
string word = "test";
object objString = word ; 
In this example, the string variable word is boxed and assigned to the object
variable objString. 
The unboxing is the process of extraction of the value type from the object
itself. For example:
objString = "newTest";
word = (string)objString ;
In this example, the object objString is then unboxed and assigned to a string
variable word.
The example of the Generic class usage is given below:



In this example, you can see the Generic class named GenericClass with its T
type parameter. T represents a type that will be replaced with the concrete
object type when this class will be instantiated. In this class, we have created
one simple Generic usage over the encapsulation with the public property and
one private field, which is controlled in full control of the property. The
private field is of a T type, which means that it could be whatever type
passed, and its name is information . Then, there is a public property
named Result , and it is also of a T type, the generic type. In this generic type
property, there are the get and the set accessors which are responsible for
retrieving the information  value and setting the value to the information 
field, respectively. The usage is demonstrated in the Main method of a
Program class. First, we use the GenericClass class to instantiate an int class
type. This is done by replacing the T type with a real object type when
creating the object of a generic class. As you can see, here, the int type is



provided as a parameter when the number variable is instantiated. After
the number  variable is instantiated, we then access the Result property of
that object in order to set the value 10 to the private field. When the number
10 landed inside, this set accessor would conclude that the type of property is
an integer, and that type will also be transferred to the field. Next, there is an
instantiation of the condition  object that is also created with the usage of
GenericClass, with the bool type as the parameter specified. So this object
will be a GenericClass object with a bool parameter type. It means that it
expects a bool type to be assigned to the property Result, which is done in the
next line. The true value is set to the Result property, which led to the true
value set into the information field. Lastly, we create the GenericClass object
of a string type, because the string is passed as a parameter when the
instantiation happens. We then assign the "Test" string value to the Result
property. When the objects are instantiated, and the Result property is set
inside each of them, we are ready for the printing. The program will print the
value of a Result property from each of the objects. When this program is
run, the console output will look like this:

Besides Generic classes, you can also declare generic methods. Generic
methods are those who take the generic types in an argument and execute
some logic with them inside the method. There is a possibility to pass a
familiar type with a generic type as a method arguments. Let us jump to a
generic method example:



In this example, you can see one class named TestGenericMethod. In this
class, there is only one member. That member is a method that is defined as
generic. The MiddleValue is declared as generic because it has one generic
argument named value. Besides this generic argument, the method takes two
more parameters, which are passed as a familiar type. The generic parameter
is passed as a middle parameter, so it is the second of three passed
parameters. The MiddleValue method has one task, and that is to print the
generic parameter value to the console by stating that this parameter is
between the first and the last parameter passed. In the Main method of a
Program class, there is a demonstration of this generic method usage. The
first thing that is done is the instantiation of the TestGenericMethod object in
order to call its generic method. This object is stored in the variable p. Then,
we call the MiddleValue method three times over the object p each time we
are passing the different type of the parameter in the generic type parameter.

The first time, we passed the 122.53 value, which is of the double data type.
So this generic method will recognize this value as a double data type, and it
will execute the console print of that argument as a double. In the second call
to the MiddleValue method, there is a true value passed as a generic
parameter. The method will recognize this value as a bool data type and will
act as the middle parameter of the bool data type when doing a console print.
Lastly, there is a call to the MiddleValue method with a "GENERIC" string
value as a second parameter. This will be treated as the string data type
passed to the method, and the program will print the message using all three
variables passed as a string data type variables. The output of this program
will look like this:



There is also a possibility to use generics in delegates. Similarly, as you can
declare generic classes and methods, you can also declare generic delegates.
Let us overview the example with the generic delegate usage:



In this example, we have exposed the generic delegate usage. In the
beginning, there is a delegate definition, it is of a T type, with a T type
parameter, so it represents a generic delegate. After the delegate declaration,
we created a static class named DelegateGenericDemonstration. Inside this
class, there is one field that is also static, which means that its value state will
always be remembered when manipulating over this class. This field's name
is num, and it is set to value 1 in the declaration. The first method inside this
class is the static method NumValue, which returns the current value of the
static field num. Then, there is an implementation of the CalculateExpression
method. This method takes one argument and performs the next calculation:
the passed value is multiplied by ten, and then we add the num variable value
to the multiplication. After the addition is done, we store this newly
calculated value inside the num field again and return it to the caller. The last



method is AssignNum, which also takes one argument. The value passed to
the method is then assigned to the num field variable and returned to the
caller. Now, we will put those methods to use with the delegate
DelegateCalcTest.

As we have mentioned earlier, delegates represent the pointers to the
methods. So, we will create delegates that will be defined as a pointer to the
methods from the DelegateGenericDemonstration class. Firstly, we will
instantiate the assignDelegate, which will be of an int data type. This delegate
is defined to be a pointer to the AssignNum method from the
DelegateGenericDemonstration static class. The second delegate that is
created is the calcDelegate, which is also of an int data type. The
calcDelegate will represent a pointer to the CalculateExpression method.
Now that we defined the delegates, we can put them to use and execute
methods. We then execute the assignDelegate call with the parameter value
of 25 passed. At this moment, delegate activates the execution of the
AssignNum method because it points to it. The delegate passes the parameter
25 to the AssignNum method, and what happens is that 25 value is then
assigned to the static field num from the DelegateGenericDemonstration
class.

After the delegate call, we print the current value of the num variable with a
call to the NumValue() method from the static class. This will return the
previously assigned value, which will be 25. So, the console output will be
"Value of Num: 25". Next, we call the calcDelegate execution with the
parameter value five passed to its execution. This will jump to the execution
of the CalculateExpression method from the static class because delegate
points to it. It passes the parameter value 5 to the method, which will result in
the next calculation. The parameter value is multiplied by five, and the
current num value is added to it. This calculated value is then stored in the
num static variable. So, 10*5=50 plus the current num value, which is equal
to 25 because of the previous delegate execution. The final addition which is
stored to the num is 50+25=75. Finally, we print the result of the calculation
to the console output by calling the GetNum() method from the static class. It
will print the "Result of the calculation: 75" message to the console. After the
program is run, we will get this result:



8.5 - Dependency Injection

Dependency Injection (DI) represents a design pattern which is probably one
of the most frequently used design patterns in C# programming. The
dependency injection design pattern is used for the implementation of the
Inversion of Control (IoC). What dependency injections do is that it allows
the creation of the dependent entities outside of a class. It makes us provide
those objects to the concrete component in different ways. The binding and
creation of the objects that are marked as a dependent are moved outside of
the class that is depending on those objects. In order to achieve this,
dependency injections implementation is needed. The dependency injection
allows us to implement loosely coupling between software modules. In fact,
it helps us to prevent the tight coupling between software modules, which
could make the development more complex even for the small changes and
features.

When there is a correct implementation of the dependency injection in the
application or software, then we can easily implement future changes and
requests from the clients. Our application will be much maintainable and
flexible for changes. Before we continue, we should first recall what tight
coupling and loose coupling are. When a lot of classes or components depend
on each other, that means that they are tightly coupled. In other words, if two



software modules depend on each other, and we need to change the
dependent object, then there will also be a need to change the module where
the dependent object is used. And of course, we do not want that to happen.
In big applications that are on the enterprise level, this kind of mistake is
unacceptable because it could lead to major modifications throughout the
software modules. In small applications, this problem would probably not be
too hard to solve, but on the enterprise level, the complexity could be
enormous.
Unlike tight coupling, there is a loose coupling. Loose coupling is when
software modules or components do not depend on each other. In other
words, if there is a change inside one module, we are not forced to change the
logic inside the other module. That is what every software architect is trying
to achieve when designing the application. When you have loosely coupled
software, it is easy to make changes and manage the new features. In the
dependency injection design pattern, there are three types of classes included
in the implementation.
The first class type used is the Client class. The client class represents a
dependent class, and it depends on the Service class. The service class is the
second type of class needed inside dependency injection implementation. The
Service class represents a dependency, and it provides the dependency
service to the Client class. The last class needed in DI is the Injection class.
The job of the Injection class is to inject the Service class object into the
Client class. There are three possible ways of injection. The first dependency
injection type is through the class constructor, and it is called
the Constructor Injection . The main thing about the Constructor Injection
is that it does not contain any default states. Only the specified values are
required to instantiate the object. The Constructor Injection uses the
parameters from the constructor to inject the dependency into some field or
property in a class, and it is possible to use the injected object anywhere
within the class. The Constructor Injection is the most popular and the one
you'll probably see most of the time. There are many advantages of using the
Constructor Injection, and the most significant one is the unit-testing support.
It is the best solution when doing unit and integration testing of software
modules. 

The second type of dependency injection is Property Injection . This type of
injection is also called Setter Injection because it is done through the set



accessor of the property. It helps us create injected objects as late as possible.
There is only one minor problem in this type of injection, which is the
difficulty of identifying the dependencies that are needed. The null checker is
required before using the Property Injection. The advantage is that it does not
depend on adding or changing the constructors in the class. 

The last type of injection is Method Injection . It is an injection that is not
used so frequently. It is only needed for some edge cases. How does it work?
The injection happens in the class method itself. The dependency is to be
utilized by that particular method. This is useful in a case when a whole class
requires only one method and not the whole dependency. 
For each of these injection types, we will provide an example. Let us start
with an example showing the most popular and the most used type - the
Constructor Injection:



In this example, we will demonstrate the Constructor Injection type of
Dependency Injection design pattern. We have one interface called IService.
This interface component contains one method signature - PrintMessage().
This method will be implemented inside Service classes. The first Service
class is the ConfirmationMessageService, which is implementing the IService
interface and contains its implementation of the interface component method
PrintMessage(). In the state of the ConfirmationMessageService class, this
method will print out to the standard output "Confirm injection" message.



The next Service class is the DeclineMessageService class, which also
implements the IService interface. Inside this class, there is a different
implementation of the PrintMessage() method from the interface. In this
implementation, we have the printing of the "Decline injection" message to
the console output. The next thing to do is to create a Client class. The Client
class, in this example, is the MessageManager class. This class contains one
private field _service, which represents the IService type object. This object
is supposed to be injected over the constructor when creating an object of the
MessageManager class. The constructor of this class takes one parameter,
and that parameter is the IService type object, which will be injected into the
private field _service. What we also have in this class is the Print() method.
The Print() method calls the PrintMessage() method execution over the
injected IService object.
So, there are two possible implementations where this call could jump to. It
could jump to the ConfirmationMessageService class implementation of the
PrintMessage() or to the DeclineMessageService class implementation of the
PrintMessage() method. The Constructor Injection is demonstrated in the
Main method of the Program class. Here, we created an object of the
ConfirmationMessageService class. This object is then passed to the
constructor when creating the MessageManager object. At that particular
moment, the dependency injection is happening. The msgManager object has
the msgService object injected into the _service field of its own class. Now,
when calling the Print() method over the msgManager variable, the
PrintMessage() method of a ConfirmationMessageService class will be
executed. This will result in a "Confirm injection" message printed to the
standard output.
After this, we create an object of the DeclineMessageService class to inject
that object into the MessageManager object and demonstrate the dependency
injection with the different class type. The msgManager variable reference is
changed to the newly instantiated object, which is now with the
DeclineMessageService object injection. This time the _service field will be
injected with the different class type object (DeclineMessageService object).
So, now, when the Print() method is called over the msgManager variable,
the PrintMessage() implementation of the DeclineMessageService class will
be executed. This will result in the printing of the "Decline injection"
message to the standard output. Now, let's run the program and check the



results.

The results are as expected. The constructor injection is achieved with two
different class type objects.
Now, let us demonstrate the Property Injection (or Setter Injection) type of
Dependency Injection.



In this example, we have modified the previous solution in order to achieve
the Property Injection type of Dependency Injection. The interface
component stayed the same, as well as the Service classes. Their functionality
and usage should stay the same as in the previous example. Objects of those
classes should just be injected into the Property of a Client class this time,
instead of the injection into the constructor. In the Client class, there is still
private field _service that is of the IService object type. The new thing is that
there is no more custom constructor where we injected the value in the
previous example of a Constructor Injection type. Instead of the constructor,



we have one public property, which is in control of the private field _service.
This property has a setter accessor, and there the property injection will
happen. The value passed to the property assignment will be set as a private
field value of the _service variable. After that is done, the Print() method
could be called over the previously instantiated MessageManager object.
Notice that, if you do not inject the value to the public property of a
MessageManager object, you won't be able to call the Print() method. In fact,
you will be able to call that method, but you will get an exception because the
Print() method is calling the PrintMessage() method over the _service object.
Furthermore, if you did not inject anything into the Service property, you
would not have any object assigned to the _service variable, and the program
would not call the PrintMessage() over the variable which does not have
object state assigned to it.
In the Main method, there is a simple demonstration of this design. In the
beginning, there are two objects created, one of ConfirmationMessageService
class type, and other of the MessageManager class type. Notice that the
generic constructor is now called for the MessageManager object creation.
Then, there is the Property Injection, where we assign the
ConfirmationMessageService object into the Service property of the
MessageManager object. This line puts the value into the private field
_service of the msgManager variable.
At this moment, everything is ready for calling the Print() method over the
msgManager without any concerns. That is exactly what is done next, and the
output will be the message from the PrintMessage() method of a
ConfirmationMessageService class. In the end, we are going to inject another
object to demonstrate the second way this program could go. We created a
DeclineMessageService object and injected it through the Service property of
the msgManager variable. At this moment, we changed the _service field
value to have a different object assigned to itself. Now, when executing the
Print() method, the program will jump to the PrintMessage() method of the
DeclineMessageService class, and it will print the "Decline injection"
message to the console output. The program output will stay the same as in
the previous example, you can check it above.
The last type of dependency injection is the Method Injection, and an
example of it is provided below:



In this example, the interface component and Service classes stayed the same
as in the previous two examples. Service classes still implement the IService
interface. The PrintMessage() method of ConfirmationMessageService prints
the "Confirm injection" message, and the DeclineMessageService prints the
"Decline injection" message. Again, the Client class retook its changes, and
there were no more private field in which the Service object was stored.
There is also no custom constructor, and there are no properties that could
implement the dependency injection. Now, there is only one method that will
be responsible for the injection. The Print() method takes one parameter, and
it is an IService type object. With that object passed to the method, we are
calling the PrintMessage() method. This is called Method Injection principle.
The method will take an object of some interface type and will call that
object's particular method. This is not commonly used, but it is useful when
the whole class itself does not require dependency, but only the method



holding that dependency. The dependency is injected only for the use of a
particular method. Everything is put together in the Main method of a
Program class once again. There is an instantiation of the
ConfirmationMessageService object and the MessageManager object in the
beginning. Then, we run the Print() method directly over the msgManager
object injecting the Service object, which was previously created (the
msgService variable). This way, the PrintMessage() of a
ConfirmationMessageService class will be called. It will print our well-
known message, "Confirm injection". As in the previous examples, we will
inject the other class object as well. The DeclineMessageService object is
created afterward. This object is passed as a parameter to another call of the
Print() method over the msgManager variable object. It is clear that the
execution will jump to the DeclineMessageService class implementation of
the PrintMessage() method. This will result in printing the "Decline
injection" message to the standard output. The console output of this program
will look completely the same as in the previous two examples.

Now that you’ve learned how to implement the dependency injection design
pattern, we can successfully move forward to introducing the IoC container,
which is also known as dependency injection container. Inversion of Control
container represents a framework that is used for the implementation of the
automatic dependency injection. Many frameworks can provide this
functionality for your software. They are responsible for object instantiation
and its period of existence. It is also taking care of injecting the dependencies
to a certain class. The IoC container will create an object of the specified
class, and it will also inject all of the dependency objects. The injection could
possibly happen through a constructor, a property, or a method as we learned
until now. This is all happening in the run-time, and the framework is
responsible for disposing of the dependencies as well. The advantage of using
this container is that we do not have to worry about building and managing
the objects manually. 

There is a specific lifecycle of the dependency injection container. Each
container must provide support for the next three lifecycle ongoings:

1) Registration  - one of the key things is that the container must provide the



knowledge about the dependencies that need to be instantiated when the code
runs to a certain type. What this means is that the container must find a way
to register the mapping of types. This is called registration of the
dependencies.
2) Resolving  - It is already specified that with the IoC, we do not need to
instantiate objects manually, and that should be the job of the container. This
process in the framework is called resolving. There should be functions that
are resolving the provided types. The process is next: the container
instantiates the object of a provided type, then it injects the needed
dependencies and returns the object as a result. 3) Disposing  - Every IoC
framework has its own lifetime manager logic, which is taking care of the
object's lifecycle and its disposal. This is what every container must provide
at the end of the dependency injection usage through the development. The
most popular IoC container frameworks that are used in C# programming
language are Autofac, Unity, StructureMap, etc. In the C# programming
language, there is something like the default dependency injection library. It
is stored in the Microsoft.Extensions.DependencyInjection namespace. If you
do not need some complex and fancy things with dependency injection, then
this build-in library should be more than great for you. 
One example is provided below:



In this example, we are using the Microsoft Dependency Injection library.
There are two defined interface components. One is the ICarManufacturer,
and the other is the ITruckManufacturer interface. The ICarManufacturer
interface contains one method signature, and that method is CreateCar().
Similarly, the ITruckManufacturer interface contains one method signature,
which is the CreateTruck() method. Then, there is a CarManufacturer class
that implements the ICarManufacturer interface. It contains the
implementation of the CreateCar() method from the interface. This method
prints to the console "Car created" message. We also have a
TruckManufacturer class exposed. This class implements the



ITruckManufacturer interface, which means that it contains the
implementation of the CreateTruck() method. This method prints the "Truck
created" message to the standard output. The dependency injection happens
in the Main method of the Program class. Here, we are creating a
ServiceCollection object that is used for storing the service objects.
The AddSingleton  method adds the CarManufacturer class object for the
ICarManufacturer type into the serviceProvider variable. This method adds
the element to the serviceProvider collection in a Singleton design pattern
way. The Singleton design pattern is something you must also be familiar
with, so we will further explain it here. The Singleton design pattern
represents the usage of only one object of some type through the application
workflow. On the first call to the singleton object, the instantiation is
happening. But every time we call the singleton object, we are only going to
get the object that was created after the first call. This means that singleton
objects represent the same reference while working with them. The best
example of a singleton object could be described with the C# property usage.
An example is seen below:
private List<int> intList;
public List<int> IntList
{

get
{

if(intList != null)
{

return intList;
}

return new List<int>();
}

}
As you can see, whenever the IntList property is called in the program, it will
always return the same object. The object is created only once, and then it is



reused. Now, when the singleton principle is clear, we can continue with the
DI example. AddSingleton method adds the object to the collection in a way
that whenever that object is used and pulled out from the collection, it will be
the same object, and it will not be created multiple times. When creating the
mapping for the ICarManufacturer type, the CarManufacturer object is used.
For the ITruckManufacturer type, the TruckManufacturer object is used.
After the Singleton addings, the BuildServiceProvider() method is called,
which is creating the ServiceProvider containing services from the provided
collection. This represents the Registration part of the dependency injection.
We have registered the mappings of the types and related objects and put
them inside a serviceProvider collection.

The next thing is the Resolving process. Firstly, we put the CarManufacturer
object in the carManufacturer variable. This object is taken from the
serviceProvider collection with the GetService method. In the GetService
method, we provide the type of object we want to get from the collection. As
we provided the ICarManufacturer, we have got the CarManufacturer class
object returned and stored inside the carManufacturer variable. Now we can
execute the CreateCar() method over the returned object. It will result in
printing the "Car Created" message to the console. Then, we also want to take
the TruckManufacturer object from the serviceProvider collection and
execute some code with it. We are again using the GetService method
providing the ITruckManufacturer type. This will return the
TruckManufacturer object from the collection, and we will be able to execute
the CreateTruck() method over that object. It will result in printing the "Truck
Created" message to the standard output. The output of this program will look
like this:



8.6 - Object Relational Mappers

The object-relational mapping represents the technique that makes querying
the database easier. It allows developers to manipulate the data from the
database in an object-oriented approach. The database that is linked with the
object-relational mapping technique, must be a relational database. The data
manipulation from the database without using the ORM can become very
unpleasant and complicated because sometimes you must write long and
complex SQL queries. Sometimes the developers are not so skilled in
working with SQL syntax, and the development process will take more time
than needed when it comes to some SQL problems. ORM is created to enable
developers to integrate with the database by only using the programming
language in which they are writing the server-side logic. This provided
developers to keep their work with the SQL on the minimum and to fasten up
the development process.

ORM is simplifying the contact with the database using the objects that are
mapped to certain tables from the database. The ORM has one core feature
inside its implementation. It is the Data Layer software module. This module
represents a library that is responsible for the communication between some
object-oriented language and the database. It works as a translator and can



handle the data flow that is going on in the middle.

Object-relational mapping is smart enough to provide all CRUD operations
from the code. The CRUD operations are well-known database-level
operations. The C stands for the CREATE; the R stands for the READ; the U
stands for the UPDATE, and the D stands for the DELETE. Create inserts the
objects as records into some tables. Read selects the data from some tables.
The update will update some of the records from a table. Delete erases the
record or records from a table. The ORM is perfect for some cases, and not
for others. There are pros and cons whatsoever.

One of the advantages is that the developer has a data model in one place,
which makes everything easier to maintain and to stick to the DRY principle
(Don't Repeat Yourself). It is also good that you do not have to write poor
SQL code, which many of the developers do because they do not have
appropriate knowledge of it, thereby placing it as a sub-language - which
SQL is not, it is a powerful programming language. It's good that ORM uses
already-prepared statements for a lot of things; they're easy to call, like
whatever method is being called. ORM abstracts the database layer and
makes it easily applicable for modifications. It also provides you with the use
of object-oriented programming, such as data inheritance. However, there are
also disadvantages to using ORM. For example, it is not so good with the
performance factor. For large application systems, everything could be
slowed down because there are many relations that are not needed in many
cases. In that case, the SQL master queries are a much safer solution.

Several ORM frameworks are well-supported by the C# programming
language. The best fit now is probably the Entity Framework ORM . Let us
introduce you more with this popular ORM.

Entity Framework

Entity Framework is the ORM that was released by Microsoft company to
create the best ORM for C#/.NET applications. The main purpose of the
Entity Framework is to make the interaction between the C# applications and
the relational databases. Entity Framework represents a simplifier tool for



mapping objects in the code to tables and columns in a particular database. It
is important to know that Entity Framework is an open-source tool that is a
part of the .NET Framework. So, it can be used free of charge. Entity
Framework is responsible for executing the database commands and taking
the query results that happen automatically. This ORM can materialize the
query results into the class objects in the C# programming language. The
Entity Framework is capable of generating the commands needed to interact
with the database in order to read or write data and execute it for you. It has
the mechanism to materialize query results into object instances inside your
application. You can then access the properties of the objects to get some
column values, or you can use LINQ to select further related object or
objects. In the Entity Framework, it is possible to map multiple entities to a
single table or, map a single entity to multiple database tables. This is the
custom mapping functionality that is provided in the Entity Framework.

The Microsoft company recommends this framework for all new software
development processes in C#. The Entity Framework represents a model of
objects inside the application; it is different from the database model used to
persist the application data. The approach is just totally different. The model
can be aligned with the database schema, but it also can be pretty much
different, which provides flexibility. There are two possible approaches to the
use of the Entity Framework. The first approach is known as the Code-First
Approach. In this approach, you must create classes inside the code that will
represent the tables in the database. When classes and their properties are
created, you can execute the command to update the database schema. At that
moment, the database will be changed to create or update the tables that are
mapped to the classes inside the code. The other approach is the Database-
First  approach. In this approach, the opposite thing is done. First, we must
create or update the database schema through SQL, or any tool capable of
doing it. After the database schema is changed, we can execute the command
to create or update the class models inside the application code, which will be
mapped to the tables from the database. Whatever fits better to your



requirements and application design can be chosen. 
We are heading now to an example of Entity Framework ORM usage:

In this example, we will demonstrate a program that is using the Entity
Framework object-relational mapper. Here, you can see a class model named
Car. The Car class has few properties, and each of them will represent one
column in the Car table, which will be created in the in-memory simulated
database for this example. The properties that will be mapped to columns are
Id, Make, Model, Year, and IsTurboCharged. In order to create a database,
we will need some database context. In the second class, we are creating a
component that will be responsible for the database context. A CarContext
class will inherit from the DbContext class, which is the Entity Framework
built-in class. In the constructor of the CarContext, we are passing the
DbContextOptions object of the CarContext type. This object is forwarded to
the base constructor, which means that it forwarded to the generic DbContext
class constructor. We must also declare a DbSet of Car objects. In this DbSet
variable, all entities (records from the database) of Car objects will be stored.



Those objects will represent the records from the database in the Car table.
There is also one method that should be overridden, and that is the
OnConfiguring method from the DbContext class. This method does not have
an implementation in its core class. In order to configure the database, we
must override this method and implement it. This method is called for every
instance of the database context creation. We will just check here if it is the
options builder configured for the database. If it is not, we will throw an
exception. Now, we are ready to create the database and to execute some
database-level commands.



In the Main method of the Program class, the first thing that will be done is
the creation of the in-memory database, whose name will be CarsDatabase.
The creation of the database is done, and the Options property is taken from
the DbContextOptionsBuilder and stored into the options  variable. Now we
are ready to play with the database through the Entity Framework commands.



In the using  statement, we will manipulate the data and do some insertions
and retrieval. To understand the using statement, you must first learn what
the try-catch  block is. During programming, many errors can occur in the
program but when that happens, C# as a programming language will throw an
exception, and the program will stop the execution. That is not so great for
the user experience, so when the error happens, we must find a way to
process that correctly and let the program continue the execution without
stopping. This is realized in the try-catch block.

In the try block, we should insert the code that has the possibility to throw an
exception. If the exception is thrown, then the program will jump into the
catch block, allowing us to take control of the exception, and possibly print
the error message to the user, and continue the execution without stopping. In
the try-catch block, there is also one more block that could be implemented.
It is the finally  block.

The finally block comes under the catch block, and it represents the code that
will be executed regardless of whether the exception happened or not. So, we
are implementing the finally block when we want to do something right after
the main execution in the try block, or after the error is thrown. The using 
statement represents the shorter version of the try-catch block. In the using
statement, there is a built-in try-catch block, and if the exception happens, it
will be processed automatically in the using statement. The using statement
will call the Dispose() method after the code block execution even if the code
throws an exception. So, here we are initializing the CarContext, passing the
options object to the instantiation of the context  object. After that, we then
access the virtual Car table from the database by using the context.Cars
 database set. As mentioned earlier, this database set represents the Car table
with its records (objects). So, we are using the Add method to add four
different objects into the set. These objects will represent records in the table.
It is important to know that the objects are not saved in the database when
using the Add method. They are just locally added. Every change done over
the context is done just locally until the SaveChanges() method is called on
the database context object. After the objects are added to the database set,
we then performed the SaveChanges() method, and at that moment, all new
objects that have been added to the database set are inserted into the database.

Now, we are able to retrieve some data from the database. We will do that



again with the Entity Framework, accessing the database context and Cars
database set. There is a need to retrieve the Car object that has a Model name
equal to "Viper", and this can be done with the help of LINQ. We will access
the database set, and then we will be able to perform filtering with the LINQ
query. We will then use the FirstOrDefault() LINQ method to retrieve the
required information. The FirstOrDefault() method finds the first occurrence
of the object if there is a match and returns its value. If there is no match for
the specified filter, this method will return the default value of the type
searched. For example, in this case, if there is no car object with the "Viper"
value of the Model column, the null value will be returned. But we are yet
happy to have that object, and this method will get the desired information
successfully. The object is stored in the car  variable, and then, accessing its
properties, we will print the Year, Make, and Model of the selected car to the
console output. The result of this program will look like this:

8.7 - Mappers
In this chapter, you will learn what mappers are, why we use them, and how
to implement them. While working as a software developer, you are
constantly in need of manipulating with some objects. Since the objects are
something that is used all the time in the object-oriented programming
principle, the developers always struggle with some object changes,
modifications, instantiations, etc. In some cases, which are very frequent



nowadays, there is a need for data mapping between two objects. When some
values are required to transfer from one object to another, it is called object-
mapping.
The most common situation where we need object mapping is when working
in Web API projects. The web applications today are mostly Web API
applications with one client-side application, which represents some frontend
framework (for example, Angular or React) and is connected with a particular
backend application. The communication between frontend and backend
happens most of the time. In that communication, many objects are
transferred from frontend to backend and vice versa. The typical example
would be when there is a form on the frontend from which field values must
be packed to a certain object and transferred to the backend. This transferred
object is required to be saved as a record inside the particular table in the
database. If, for example, the backend application is using an ORM like the
Entity Framework, then the object that came from the frontend must be
mapped to the model object.
As we learned in the ORM chapter, the model object represents the record
from a particular table. In this case, the transferred object should be mapped
to the model object, and then, the model object should be saved over the
database context. The other frequent example would be the data transferred in
the opposite direction. Imagine there is a page inside the frontend application
that is representing the information about some business model objects.
When you land on that page, the client-side application then sends a request
to get the information about the wanted object. On the backend side, you
have to retrieve the object from the database table and have it stored in the
model object of the Entity Framework ORM. Then, that model object must
be mapped to the frontend class type object and transferred through the
protocol back in the client-side application, where the pieces of information
will be shown to the user. These are the most common data mapping actions
that are being resolved in web applications nowadays.
Object mappings could be done manually, mappers could be custom-created,
but it would take time. Due to this, many applications use already built
mapper libraries that can support various mappings between objects. In the
C# programming language, the best-suited mapper library is probably the
AutoMapper. It is a free library that can be used in any C# application. The
AutoMapper is the one who saves you lots of time and effort that you would



have lost while trying to map properties manually every time you need object
mapping.
Come on now, let's check out one AutoMapper usage example:

In the beginning, there are two classes exposed. As you can assume, the
objects of those two classes will be the ones that will be mapped. The first
class is called EuropeanCar, and the second class is called AmericanCar. The
AutoMapper works in the next way: it scans the property names for both
classes that are supposed to be mapped. For the property names that are
matched in both classes, it will do the automatic value transfer from one
object property to another. So, in conclusion, when you are using the
AutoMapper, the classes of the objects that you want to map must have the
same property names. If they do not have the same names, the mapping will
be executed only on the properties that are matched by name. The properties
that are not matched by name will have their default type values in the
mapped object. Now, let's see how we will put this together.



Here, we will demonstrate the mappings of the objects from the previously
explained classes. The first thing that must be done is the creation of the
MappingConfiguration object from the AutoMapper library. When creating
this configuration, we must provide the mappings and all the details needed
for the mappings. In this case, we are creating only one map definition, and
that is the mapping of the EuropeanCar class object to the AmericanCar class
object. The CreateMap method is creating the definition for assigning
property values from the EuropeanCar object to the AmericanCar object.
Everything after the CreateMap method call represents certain definitions for
the custom and additional logic of mapping properties. In this case, there is
one custom mapping for the DriverSide property. In the ForMember method,
we are defining a custom map for a certain property; in this case, every
DriverSide value from the EuropeanCar class will be mapped differently to
the AmericanCar object. In the AmericanCar object, the DriverSide property
value will always be mapped as the "Left" string value. So, whatever comes
from the source object, the value of the DriverSide in the destination object
will be string "Left".
After the generic and custom mapping definitions are created, we are ready to
instantiate the IMapper type object over which we will call the mapping



methods. Next, we create an object of the EuropeanCar class type. This
object will be used for the mapping and the creation of the AmericanCar
object through the AutoMapper. The Map method is executed over the
mapper object, and the new instance of the AmericanCar class is created. The
Map method has many overloads, but in this case, it is required to provide the
source object type first and the destination object type second, after which
there is a concrete source object passed to the function. This will create a new
instance of the AmericanCar class inside AutoMapper, and all properties will
be mapped as defined in the configuration. After the creation and mapping
are done, the Map method then returns the newly created object of the
destination type class. Now, in the americanCar variable, we have the
complete object with all of the property values mapped from the source
object. In the end, we want to print the custom mapped property in order to
check if everything went fine in the AutoMapper. The program output will
look like this:

The program printed the correct and expected behavior. The mapping for the
AmericanCar property DriverSide is "Left" which we have defined in the
configuration of the mappings. In addition, you can try to print out the other
property values from the americanCar variable, and you will see that all the
values are the same as from the source object europeanCar. AutoMapper is
one powerful tool, isn't it?

8.8 - Unit Testing



Unit testing represents a principle of testing the particular software unit or
module in order to define that it is ready for usage and to see if the
functionality behaves well. Unit testing is, in fact, automated tests that are
developed and run by developers. It is supposed to assure that the unit or any
application section is working as expected and that it matches the design and
correct behavior. Unit testing can be performed on both procedural and
object-oriented programming. From the code aspect, a unit test could be the
entire module of the application; it could be an individual method, an entire
class functionality, certain application flow through the multiple method
executions, etc. The best way is to write tests for the smallest testable units
and then build and proceed with the more complex tests that are combining
the smallest units together into some logical code execution flow. While
programming in some software, developers should create the criteria and the
results which are detected as correct behavior and insert them into tests to
verify the exactness of the tested component. What is required to achieve is
the isolation of every small part of the application and proving that those
individual sections are working correctly. The advantages of writing the unit
tests while developing some software are multitude. Unit tests are always
there to discover the problems inside the software in their early phase. The
development cycle is often to last longer if unit tests are included for every
functionality. It prolongs the time of the completion, but it provides the
quality of software that is about to be delivered. The unit test can detect the
bugs in the implementation, as well as some missing logical parts of the
component tested. If the developer knows that he must write a unit test for the
functionality that he is about to develop, it forces him to think more sharply,
and it also produces better and more quality code. The developer is then
thinking more about input cases, potential outputs, potential errors, which is
making him code better and write high-quality tested code. The significance
of finding problems in the code in the early development cycle is crucial. It
could reduce the enormous amount of time. The cost of finding potential
problems on time is very low, unlike the cost of identifying, debugging and
correcting the bugs later in the development cycle. The poor code quality can
stop you from creating the unit tests because it can become impossible to test
the particular unit if it is coded on a low-quality level. This is why test-driven
development is forcing the programmers to analyze better, structuring the
classes and methods in a better way. If not found, the problems could be
released for the client's live usage of the application, which could lead to



various problems in the future. The use of unit testing is making a developer
able to refactor every code part if needed and yet stay sure that the
application component is still working as expected. The best practice is to
create test cases for all methods and working flows. This way, whenever
some change in the code creates a bug, it could be identified very fast.

When following the test-driven development, commonly known as TDD ,
unit tests are supposed to be written before the code functionality itself.
When the unit test is done, and the feature is also done, the developer should
run the test and check whether the functionality works correctly. If the test
passes, the feature is considered to be complete and accurate. The unit tests
are supposed to run until the development process is not finished. If the test
passed today, it doesn't mean it's going to pass tomorrow. There is a chance
that new functionality or some code that is related to an already tested
functionality could break the test that was marked as good. This is why tests
are run in a loop until the whole development is finished. If some test
execution fails, it is considered that there is a problem in feature or maybe a
problem in a test. Sometimes tests must be changed, and some things should
be added in order to cover the correct behavior. When a test fails, it does not
always mean that the feature is not correct; the test could also be the reason
for the failure. Test-driven development helps to identify the problems before
handling the functionality to testers or clients. It reduces the chance of
something being missed or badly provided.

Besides the numerous advantages that unit testing usage contains, there are
also some limitations and disadvantages, like for almost every approach in
computer programming. Unit tests are not always certain to detect every
problem and bug in the software because it cannot cover every execution
flow. Unit tests are supposed to catch errors only in some small targeted
places inside the code. They also don’t catch the performance issues of the
functionality. So, the conclusion is that unit tests cannot prove the complete
absence of errors, but still, they can help a lot. It is not possible to know all
possible inputs for some functionality, as by definition, the unit testing
principle is only covering the testing of small units. However, there are also
other testing approaches that are supposed to track and identify problems not
in a single unit, but in some flow, or whole execution path. This approach is
called integration testing . There are also few more testing approaches that
are helping to achieve software quality such as penetration testing, UI



automated testing, etc. When a method has known input parameters and a
certain output, in that case, unit tests tend to be the most comfortable. But, on
the other hand, it is not easy to write a unit test when some functions are
interacting with external components outside the application, such as web
services, databases, etc. For example, if the method is calling some web
service, and the result of the call is used for some purpose further in the
method, then the developer must mock the service response. The service
responses could be multiple, so in that case, the developer will have a
problem because he would need to cover every possible response type of the
external web service. There is also a problem when the method is working
closely with the database. In that case, the developer must create a mockup of
the database or the database section (some table records or similar), which is
very likely not to be as good as the real database, and the real database
interactions.

Now, let us talk more about the testing approach that correlates close to the
unit testing. This testing principle is integration testing . Integration testing
represents a software testing paradigm where individual components are
linked and tested as a group. The focus inside this principle is to find the
problems between interactions of the smallest units. The smallest units are
supposed to be tested in unit tests, and their relations, connections, and
dependencies are to be tested inside integration tests. In the integration testing
principle, there are several approaches. The Big-Bang approach is when all of
the units are combined and tested at once. The Top-Down approach to
integration testing is when top-level units are tested at the beginning, and
lower-level units are tested after that, in a respective way. The bottom-up
testing approach to integration testing is the opposite of the Top-Down
approach. So, it is when low-level units are tested first, and the upper-level
units are tested afterwards. The last approach is the Sandwich or the Hybrid
approach. It represents the combination of the Bottom-up and Top-down
integration testing approaches. There are a few things that are required for
integration testing success. The developer should ensure that there is proper
design information where all of the possible interactions between units are
described. It is not possible to execute integration testing without this
information clearly defined. The developer should be sure that each unit is
tested separately before putting them into an integration test. If the units are
not covered correctly with their own usage tests, the integration tests would
not have any sense because they would be performed with the badly tested



smaller units. Developers must automate their tests, especially when using
the top-down, bottom-up, or hybrid approach. This is because the regression
testing is about to be re-executed every time a unit is inserted into some
integration test. 

For unit testing in C# programming language, there are few frameworks that
are supporting it. They have the implementation for the creation of the unit
test, initial setup values, and all the logic of the unit test execution. The most
popular that are used often in C# are NUnit and XUnit frameworks. The
Visual Studio contains some built-in unit testing tool that is also commonly
used. All of the testing frameworks are here to suggest the same goal at the
end. They support the developers to write unit tests faster, easier, and much
simpler than without using the framework. The unit testing frameworks offer
almost all similar features, but they surely differ between each other. Some of
the frameworks are concentrated just on the execution of the very complex
tests, while other frameworks are focused more on usability and simplicity of
writing and executing the tests. The frameworks have differences, and they
all group the priorities by their judgment, but at the end of the day, they all
serve the same final goal.

This goal is to define a clear path for a developer for the creation, execution,
performance, and stability of the unit tests. Now, we will demonstrate the
whole process of a few small unit tests. We will test the code and provide the
results to familiarize you with the paradigm.

For this explanation, we have chosen the NUnit framework for unit testing.
We have created one NUnit test project inside our solution in Visual Studio.
This project will contain references from the other projects inside our
solution, which we will provide to it. Every project reference that has certain
units that need to be tested will be inserted into the test project. This allows
the unit test project to access the desired part of the code from other projects.
For this example, we have created a new project where we will test the code
for the unit tests. This project name is called TestableProject. Inside this
project, we have added one class named UnitTestsExample.



Here, we have exposed one class named UnitTestsExample, which will be
fully tested inside our NUnit TestProject. This class contains four public
methods. The first method is the GreaterThan method. This method return
bool value as a result. It takes two parameters, and both are int values. The



logic is simple. If the first parameter passed is greater than the second, the
method will return true as a result to the caller thread. If the second parameter
value is greater than the first, the method will return a false value.

The second method is the ContainsText method. This method also returns the
bool type as a result. It takes two parameters, the first one is the string text,
and the second one is the string substring. In this method, we will determine
whether the text contains passed substring inside of it. For this, we will use
the Contains string extension method. This method will conclude if the text
does contains a substring. If yes, the method will return a true value; if not,
the result will be false.

The third method inside this class is the FindElementIndex method. This
method returns int as a result of the execution. It takes two arguments, the
first one is the List of int values, and the second argument is the int value
which will be searched inside the previously passed List. This will be done
inside the for loop statement. We will create one counter variable that will
represent the index of the List element. In every iteration, the program will
increment the counter by one. Inside the body code block of the loop, there is
a check to see if the element on the current index is equal to the passed
element value. If equality is found, the index of the found element inside the
array is returned as a result of this method. If no element equal to passed
value is found inside the array variable, the method will return -1 as a result.
The last method inside this class is the KeyValue method. This is a public
method that returns the string type as a result of the execution. It takes one
parameter that represents the key int value. Inside the switch statement, there
is a logic that checks to see if the passed value is any number between zero
and five. There are six elements inside the switch statement, for each key
between numbers zero and five, the string representation of the number will
be returned. If the passed key is not any of the numbers from zero to five, the
method returns the generic message "NoValue," which indicates that there is
no corresponding string representation within this method for the passed
number parameter. Now that we have the class, we can jump to the testing of
this small programming unit.



Here you can see one Test class from the NUnit test project. Inside this class,
we will test the code from the UnitTestsExample class. As you can see, there
are several public void methods inside this Test class. Above each of them,
there is an attribute defined inside the []. The first one you will see is the
[SetUp] attribute above the Setup() method. This attribute means that the
NUnit framework will execute this method first when test or tests are run.
Inside this method, we should always put some initial values and things that
we want to declare and use throughout the tests. Above this method, there is a



declaration of the instance variable of a UnitTestsExample class type. This
object gets instantiated inside the Setup method. This will be executed first,
and this object will be used in every test below the Setup method.

The first unit test is GreaterThanTest. We are calling the GreaterThan method
over the instance object and store the result inside the greaterThan bool
variable. This method is called with the 5 and 4 parameters, which means that
we are expecting the true value to be returned - 5 is greater than 4 obviously.
The NUnit framework uses the Assert class in checking the correctness.
Inside this class, there are many methods that check the accuracy of the code
results in many different ways. In this example, we will use the AreEqual
method, which takes two objects and checks their equality. Since 5 is greater
than 4, we assume that the true value is the expected value, and as the second
parameter to the AreEqual method, we are sending the result of the
GreaterThan execution.

The second unit test inside this example is the ContainsTextTest. We will call
the ContainsText method over the instance object with the "New text" and
"Old" strings passed in arguments. So, we are trying to determine if the string
"Old" is a substring of the "New text".  The result of the execution is stored in
the containsText variable. The expected condition is false, and it is compared
with the result stored in the containsText variable. This should be marked as
passed because "Old" is not contained inside the "New text" string. Then we
will try the same thing but with different parameters that should provide a
true result with the substring comparison. Those parameters are now "New
text" and "New". This should also pass because the expected value is now set
to true, and the method execution should also return true because "New" is
contained inside the "New text" string.

The next unit test is FindIndexTest. We have created one list with seven
values. After this, the program is calling the FindElementIndex method over
the instance object passing the previously instantiated List object and the
value 22 for search. The result of this execution will be stored inside the
index variable. Finally, we are doing the Assert with the AreEqual method,
passing 5 as the expected index (because number 22 is at index 5 inside the
created list) and the index variable value. This should result in a passed test.

The last test is KeyValueTest. We are testing the KeyValue method of the
UnitTestsExample class. The program is trying to find the string



representation of number 6, which is passed as a parameter to the method
execution. The outcome is stored in the result variable. Then we are checking
the result value by assuming that the expected value should be string "Six".
This assertion will not pass because, in the KeyValue method
implementation, there are cases from zero to five. All other numbers will
result in the generic message "NoValue".

Now we will run those tests and check for the final outcome.

Here, in the Test Explorer in the Visual Studio editor, you can see all of the
tests we have created. As we expected, the first three tests passed, but the last
test failed. You can also see the detailed summary of the failed test.



Chapter 9: The Final Project
Congratulations, you have passed all the chapters about C# programming
language. We have saved the best for the end. We've created a small
interactive application in which we've probably shown all the techniques and
important things about C # programming language combined. You'll be able
to see almost everything you've learned so far and pack everything together
in a small but functional software solution. This is the interactive console
application in which there are user interactions and program response. It is
about small Car Dealership functioning. We will start from the files and
folders organization inside the application. Every application should have
well-organized resource storage so that the developers can easily manage
everything. The app folder tree looks like this:

In the above picture, you can see a well-organized small application structure.
The name of the project is CarDealershipManager. Inside this solution, the
first thing you will see are the dependencies. In the dependencies folder, there



are always some pulled-in frameworks and references, such as .NET Core
framework library.
Inside the packages folder, there are external libraries and other sources that
are included inside our application, and we need them for certain things. The
examples of those packages are Entity Framework, Dependency Injection
support, etc. Below that, you can see folder structuring. There is a
DataAccess folder that contains one class that will represent everything about
database context. This folder is the data layer of our application. Inside this
folder, there will be everything related to the configuration and management
of the database. The next folder is the Interfaces folder, where we will store
our interface components for the application. Here we have only one interface
component - IVehicle interface.
The next folder is the Objects folder. Inside this folder, there are classes of
the entities which will be required for data manipulation. You can see three
classes here, Car, Truck, and Vehicle class. The next folder is the
ServiceInterfaces folder. Here we have the interface component, which will
be responsible for the dependency injection of the service objects. Each of
these interfaces will have one class that implements it. The final folder is the
Services folder. As you’ve probably already noticed, these are the service
classes that will implement the interfaces from the previous folder. These
service classes will be used for the dependency injection. In the end, there is
a Program.cs file that contains one Program class with its Main method. As
we have learned until now, inside this method, everything will be put
together and made to work precisely. Now, let us break this to pieces and
explain part by part. First, we will start with the Objects folder and its logic.



Before the class implementation, we inserted the code from the only interface
component that is inside the Interfaces folder. This interface has two read-
only properties, and its name is IVehicle. The properties are boolean
IsAutomatic and string Vin. Below the interface component, we have
exposed the code from each of the three classes inside the Objects folder. The
first class is the Vehicle class. This class is implementing the IVehicle
interface, which means that it will have the implementation of the two
properties inside the IVehicle. Besides those two properties, it contains the Id
property of int data type. Properties IsAutomatic and Vin have the protected
set implemented, and that means that those properties could be a value-
assigned inside parent and inherited class. After the property definitions,
there is a Vehicle constructor, which takes two parameters and assigns their



values to the IsAutomatic and Vin property, respectively.
The next class is the Car class. This class inherits the Vehicle class - so the
Vehicle class is the parent class of the Car class. It can access all the
properties from the Vehicle class, and it also has its own property. The Car
property is the TrunkSpace read-only property. The Car's own constructor
uses three parameters, the values for the IsAutomatic property, the Vin
property and the TrunkSpace property. This constructor passes the parent
property values from the parameter to the base constructor. It means that it
called the base constructor with the isAutomatic and vin parameter values
passed. In the implementation of its own constructor, there is a check on
whether the trunkSpace parameter value is greater than five hundred. If the
condition is true, the program will throw an exception with the message
"Trunk space for a car cannot exceed 500". Below the condition check, there
is a classic property initial state assignment of the TrunkSpace property.
The last class is the Truck class, which also inherits from the Vehicle class.
We can assume that the Truck and Car are the child classes of a Vehicle
class. It has one read-only property named BedSpace. In the constructor of a
Truck class, there is a similar thing as in the Car constructor. Three
parameters are passed from which two of them are furthered to the base class
constructor, and those are isAutomatic and vin parameter values. In the body
of its own constructor, there is a check to see if the bedSpace parameter value
is less than five hundred. Similarly, like in the Car class, if the condition is
true, the program will throw an exception with the message "Trunk space for
a truck cannot be below 500". After that, there is a common property state
assignment of the BedSpace read-only property.
The next thing to be explained is the DataLayer, which, in this case,
represents the VehicleContext class. Let's take a look at the code:



This is a data layer class. The VehicleContext class is extending the
DbContext class from Entity Framework package. In this class, we can see
two public constructors. The first one is an empty constructor that creates the
instance of the VehicleContext without any initial state assigned. The second
constructor takes one parameter of the DbContextOptions<VehicleContext>
object. This constructor does not also have its own implementation. Still, it is
passing the DbContextOptions object to its base constructor in the DbContext
class to assign the options for the context. This constructor forces the Entity
Framework to do the context initialization instead of us. After the
constructors, there are three DbSet properties. Each of them will represent the
table content from a database. The first one will be a Vehicle database set, the
second and third one - its children, Car and Truck database sets. Then, there



is a standard override of the OnConfiguring method from the DbContext
class. Here we are just checking to see if the DbContextOptionsBuilder
object is configured. If it is not configured, we will throw an exception with
the message of "Must pass optionsBuilder in for use".
The last thing in this class is the override of the OnModelCreating method
from the DbContext class. This method is setting the fluent configuration for
the model properties, and ads additional bindings and logic for database
actions work if it is needed. This method has one parameter passed, and it is a
ModelBuilder class object that is responsible for managing the fluent
configuration of the entities. In this overridden implementation, there is a
ValueGeneratedNever() method executed over each property from the Car
and the Truck model objects. This means that each of these properties will
never have a generated value by the database when the instance of their
entities are saved. So, for all three properties of the Car model and the Truck
model, the values will never be generated from the database side when the
record is saved to the database.  After this execution, there is a call to the
OnModelCreating method from the base class in order to configure the
generic fluent database work. This was all about the data layer class from our
car dealership application. We can now move on to the dependency injection
based components.

The ServiceInterfaces folder is next to be detailed. Inside that folder, we have
two service interface components that will be implemented by the service
classes in order to achieve dependency injection. The first interface
component is the IDealershipService. This interface is the dealership-oriented
interface, and it has signatures of four methods:
1) The GetInventory method, which will return the List of IVehicle type
objects in the implementation.



2) GetVehicle method, which has one parameter - the vehicle identification
number, based on method in which we will use to return the IVehicle type
object to the caller.
3) Then, the SellVehicle method, which will obviously remove the vehicle
from a certain inventory based on the vehicle identification number, passed
as a parameter.
And, in the end,
4) AddVehicleToInventory method with IVehicle type object in the argument
that will add the object to the inventory list.
The second interface is simpler, and it has only one method. The
IManufacturerService interface component has only the BuyVehicle method,
which returns the IVehicle type object. It is a manufacturer based interface.
Those were the service interface components that are ready to be
implemented by the service classes. Now, we can go ahead and check the
service classes, their implementation, and logic.

The first service class that will be explained is the DealershipService class.
The code of this class will be split into a few parts, and each part will be
separately explained because of the size of the class. The DealershipService
class implements the IDealershipService interface component, and it will
implement all of the methods from this interface. The first thing in this class
that you can notice is the private field _vehicleContext, which is of
VehicleContext class type. This field's state will be set in the class
constructor, as provided below. The first method that is implemented is the
GetInventory method. This method is supposed to return the List of IVehicle



objects. In the beginning, we are instantiating List<IVehicle> type object.
This object is empty in the beginning. Then, the list is populated by the Cars
and Trucks lists from the given context. This means that we are adding all of
the Car objects and all of the Truck objects from the _vehicleContext. The
Cars and Trucks properties inside the context object are representing the
records from the Car and Truck table in the database. It means that the list
which we will return as a result of this method execution will have all of the
objects from the Truck and Car database table. After we added those two
database sets into our list, we are returning it as a result to the caller of the
method. Now we can move forward with the explanation of the next
methods.



The next method is the GetVehicle method. This method will be used to
retrieve the IVehicle object using the vehicle identification number. The
method has one parameter, which is obviously the VIN from which the
particular object is to be found. First, we are declaring the IVehicle variable.
The value of this variable is not instantiated, it is just declared, so this
variable state is just null for now. Then, we are searching in the database
context, in the Cars database set, the first-or-default object whose Vin
property is equal to the vin  value passed from the parameter. The value
returned from this query statement will be stored in the vehicle  variable. If
there is no Car object with that particular vin value, the state of the vehicle
variable will stay null. If that would be the case, we will then search in the
Trucks database set from the context. The returned value will be stored again
in the vehicle variable. If this query also did not return anything but null, the
program will throw an exception with the message that there is no vehicle in
the database with the provided identification number. However, if there is a
vehicle with this particular identification number in the Cars or Trucks
database sets, it will be returned as a result of this method execution.
The next method that is implemented is the SellVehicle method. It also has
one parameter, and that parameter is again the vehicle identification number,
just like in the previous method. The idea is similar to the previous method;
we will search for the vehicle with the provided vin inside the database sets,
and if any is found, we will remove it from the database set and save the
changes. In the beginning, we are declaring the IVehicle type variable. Then
we search for the vehicle with provided vin inside the Cars database set. The
result is stored in the vehicle variable. If the vehicle is null - no Car is found
with that identification number, then we will search inside the Trucks
database set. If the vehicle is found inside the Trucks set, we will remove it
from the context and execute the SaveChanges() over the context. This
method assures that the object is deleted from the context. After all of these
conditions are fulfilled, we will then return the control to the caller of the
method.
The other case will be if the vehicle is found inside the Cars database set. In
this scenario, we are removing the vehicle from the Cars context and then
performing the SaveChanges() method over the context object. If none of the
conditions are fulfilled, the program will throw an exception with the
message that states that there is no vehicle with the provided identification



number. In this scenario, the vehicle is impossible to sell (remove) because
that vehicle does not exist at all. Let's take a look at the last method inside the
DealershipService class. 

The last method implemented is the AddVehicleToInventory method. This
method takes one parameter that is an IVehicle type object. The first thing
that we do here is to check whether the passed vehicle object is of a Car class
type. If this is correct, the program enters the if body block code. Inside this
code block, we are instantiating a Car class object by providing the
IsAutomatic, Vin, and TrunkSpace property values from the passed object.
This will invoke the constructor of the Car class, and it will create an instance
of that object. This object will be stored in the car  variable. After this, there
is an adding of the car object to the Cars database set inside the database
context. This will put a newly created car inside the database set, and then
execute the SaveChanges() method over the context, the Cars set will be
increased by one new car. If all of this is done, we are returning from the
function.

The other case is if the vehicle passed object is of the Truck class type. In this
case, we will instantiate the Truck object by providing the IsAutomatic, Vin,



and BedSpace property values from the parameter object. This will invoke
the Truck constructor, and it will return a new object of a Truck type to
the truck  variable. After that, the truck is added to the Trucks database set
inside the context, and the SaveChanges() is executed to save the newly
added object to the database. After this, we are returning the control to the
caller thread. If none of these is executed, the exception is thrown. This
exception contains the message that there is no corresponding type for the
parameter passed an object - it is neither the Car nor Truck class type.
This is the whole implementation of the DealershipService class, and now we
can jump to the other service class implementation.

The second service class is the ManufacturerService class. This class
implements the IManufacturerService interface, which means that it must
have the implementation of the BuyVehicle method. The BuyVehicle method
is the method that is supposed to return the object of IVehicle type to the
caller. At the beginning of the method, there is a creation of the object of a
Random class. In the C# programming language, the Random class is the
pseudo-random number generator. This means that inside this class, there are
methods that produce a sequence of numbers that meets certain criteria. There
is a random generator algorithm implemented here, and it works with
providing the statistical requirements for randomness. When buying a
vehicle, this method will decide whether that would be a Car or a Truck
vehicle object. The decision will be randomly picked.



In the if statement, you can see the call for the Next method over
the randomNumberGenerator  object. This object has two parameters
provided, the two integer values which represent the minimum and the
maximum number to be generated by this method. So, the Next method from
Random class in C# is generating the random value between provided values.
This will generate the number between zero, and then do the modulo
operation over it. If the result is an even number, the program will enter the if
statement body block. So, the even number will result in Car object creation,
and the odd number will result in Truck object creation. The chance for both
is about 50-50 percent.
In the scenario where we are creating a Car object, we will pass the true value
for IsAutomatic property, thereby creating a new GUID for the vehicle
identification number and generating a random value between 100 and 499
for the TrunkSpace. If you are not familiar with GUID representation, a
GUID stands for the globally unique identifier, which is also referred to as
UUID (universally unique identifier). These numbers are used in the
programming world to represent unique numbers because they are almost
impossible to repeat while generating. It is a 128-bit reference number. In the
case of creating the Truck object, we are passing the true value for
IsAutomatic property, generating a new GUID for the vehicle identification
number (like in the Car object creation), and passing the value between 501
and 2000 for the BedSpace property of a Truck class. There is a 50% chance
for returning the Car object, as well as the Truck object as a result of the
BuyVehicle method.
Now we can go ahead and see the Main method implementation in the
Program class, which will put all of this together.





The implementation of the Main method is ready to put to life every
component in the application right now. Let's start. The first thing you notice
is the creation of the DbContextOptionsBuilder object over which we will use
the in-memory database. The Options property of this builder is passed to the
options variable because we will need it for the creation of the database
context. After it, there is using  statement in which we will create the context.
Next, we will enter the using statement code block, one bit larger code block
where the whole logic will happen. In the beginning, we will initialize the
serviceProvider variable. We will be creating a new ServiceCollection object
and adding the required mapping for dependencies. A singleton dependency
map is added for both of the service classes. The DealershipService mapping
is added just with the different overload method AddSingleton, while the
singleton service is added with the factory, which is specified as a built-in
delegate.

After the dependency injection mappings are defined, the
BuildServiceProvider() method is called over the ServiceCollection creation.
It prepares everything for the usage of dependency injection. The DI defined



mappings will be stored in the serviceProvider variable, and we will use that
variable to get a particular service when needed. Then we will create one
string variable userInput and assign an empty string to it. This variable will
be responsible for the user interaction with the console application. The while
loop is executed until the userInput variable becomes "exit".

Now, everything is ready for printing the initial state of the console output.
We are going to print the options that the user could execute inside the
application. First, we are clearing the console, and then we print the console
application name in the beginning - "Dealership Manager 2.0". The options
for the user will be: 1) Buy a vehicle 2) Sell a vehicle 3) Show inventory. The
user is able to communicate with the application by pressing the one, two, or
three value in the console. When the user presses any of these numbers on the
keyboard, the value will be stored inside the userInput variable (userInput =
Console.ReadLine()). If the user typed "exit" to the console line, the program
will break, and the execution will finish. If the user typed number 1 and
presses enter, the program will execute the first if statement code block. If the
user presses number 1 and enter, it means that he wants to perform the action
of buying a car. So, we are calling the serviceProvider to get the
IManufacturerService type service and to execute the BuyVehicle method
over that service object. This method execution will create one random
instance of the Car or the Truck class objects and return that value. It will be
stored in the vehicle variable.

Now, when a vehicle is bought, we must store it inside the inventory. So, we
are calling the serviceProvider to resolve the IDealershipService type and to
get the DealershipService object over which we will execute the
AddVehicleToInventory method, passing the previously bought vehicle. This
will determine whether the passed parameter vehicle is of the Car or Truck
class type. After that, it will put it inside one of the database sets and save the
new car instance to the database.

The second user choice could be to sell a vehicle. This will happen if the user



types number 2 and presses enter. This will lead the program into the second
if statement in which the program needs to perform the selling of a vehicle.
The first thing that must be done here is the retrieval of all the vehicles. This
is done by calling the serviceProvider to resolve the IDealershipService type
to get the service over which it will execute the GetInventory method. This
will return all the vehicles inside the inventory, and then the FirstOrDefault()
entity framework extension method could be executed. This will take the first
element inside the inventory if the inventory is not empty and store it inside
the vehicle variable. If the vehicle is not null, and the inventory was not
empty, that means that we can perform the selling of the car. We will do that
by calling the serviceProvider to resolve a service object and then call the
SellVehicle method over it.

In this call, we will pass the Vin property value of the vehicle variable so the
program could know the vehicle to remove from the database set. This will
search for the vehicle in the Cars database set first; if found, it will remove it
from the set; if not, the program will perform the search over the Trucks
database set. Furthermore, if the vehicle is found there, the removal will be
executed over the Trucks set. If there were no vehicles in the inventory, the
program would print the "You have no vehicles to sell" message to the
console output.

The last case left is the number 3 input. If the user types number 3 and
presses enter, it means that he wants to see his inventory listed in the
program. So all the cars he bought should appear there in the list. The first
thing we should do is to get all the vehicles from the inventory if there are
any and store them inside some variable. In order to do that, we will have to
call the serviceProvider to resolve the IDealershipService once again and to
get the service object. When that is done, we will then execute the
GetInventory() method over that service object. This will return the list of
vehicles in the inventory and store them into the vehicle's variable. Then we
have a check if there are any elements in the vehicles variable list.
If the condition is true, we must print the vehicles to the user, and the user is



then informed that the list will contain the vehicle identification numbers.
Then we will iterate through each vehicle in the vehicles list and print the Vin
property value of the vehicle to the console output. If there were no vehicles
in the inventory, the user would get the message "You do not own any
vehicles" on the standard output. To confirm any of the actions, the user must
press enter in the end, and then, the loop will start again. With this solution,
we have managed to make an interactive application that communicates with
the user via the console input.
Now let us test this application. We will start it and act as a user. The console
will look like this in the beginning:

We will first test the edge case. We will then choose to Sell a vehicle option -
Number 2. It should print the message that we do not own any vehicles. Let's
try it and see what happens.



Good! Now, let's try to buy three vehicles. We will execute the option one
three times.



Now, let's try to display the inventory. This should show us three-vehicle
identification numbers because we have bought three vehicles.



Great, there are three vehicles in our possession. Now let us sell one vehicle
and show the inventory again. It should display two vehicle identification
numbers.



Fine! Everything is working correctly.



Chapter 10: Conclusion
Congratulation! You have read the whole book and made your first step
towards mastering the C# programming language. This book described the
basic knowledge you should have in order to start evolving with C# and
.NET framework. It is important that you have understood all of the examples
from the book. This would mean that you obtained high-quality knowledge
for a beginner. If you did not understand all of the examples, we would
suggest that you go back and try again. After that, you are ready to start
improving your algorithmic thinking as well as the advanced level of C#
programming language.

This programming language is one of the most popular and modern
programming languages in the world. It's not hard to learn if you're going
step by step and trying to understand everything with high concentration and
hard work. Various support for the C# programming language makes
everything more comfortable, as you can find many solutions for different
problems across the internet, and this will help you to evolve faster. C#
programming language can be used in almost any kind of software
development such as Console Applications, Mobile Applications, Web
Services, Windows Applications, Blockchain development, Cloud
Applications, Artificial Intelligence, Machine Learning, etc. It is on you to
choose your passion and start improving in a particular field. We hope you
enjoyed the book, don't stop, and keep up the good work!


	Chapter 1: Introductory Topics
	1.1 - Data Types
	1.2 - Integer
	1.3 Decimal
	1.4 - String
	1.5 - Boolean
	1.6 - Var

	Chapter 2: Branches and Loops
	2.1 - For Loop
	2.2 - While Loop
	2.3 - Recursion
	2.4 - If…Else

	Chapter 3: Methods and Properties
	3.1 - Access modifiers
	3.2 - Return values

	Chapter 4: Classes and Objects
	4.1 - Class
	4.2 - Object
	4.3 - Interface

	Chapter 5: Collections
	5.1 - List
	5.2 - Dictionary
	5.3 - ForEach

	Chapter 6: Object-Oriented Programming
	6.1. - Encapsulation
	6.2 - Inheritance
	6.3 - Abstraction
	6.4 - Polymorphism

	Chapter 7: SOLID Principles
	7.1 - Single Responsibility Principle
	7.2 - Open-Closed Principle
	7.3 - Liskov
	7.4 - Interface Segregation Principle
	7.5 - Dependency Inversion Principle

	Chapter 8: Advanced Topics
	8.1. - Asynchronous Programming
	8.2 - Parallel Programming
	8.3 - LINQ
	8.4 - Generics
	8.5 - Dependency Injection
	8.6 - Object Relational Mappers
	8.7 - Mappers
	8.8 - Unit Testing

	Chapter 9: The Final Project
	Chapter 10: Conclusion

